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As the popularity of the Linux system continues to grow, the interest in writing Linux device drivers steadily increases. Most of Linux is independent of the hardware it runs on, and most users can be (happily) unaware of hardware issues. But, for each piece of hardware supported by Linux, somebody somewhere has written a driver to make it work with the system. Without device drivers, there is no functioning system. 

Device drivers take on a special role in the Linux kernel. They are distinct "black boxes" that make a particular piece of hardware respond to a well-defined internal programming interface; they hide completely the details of how the device works. User activities are performed by means of a set of standardized calls that are independent of the specific driver; mapping those calls to device-specific operations that act on real hardware is then the role of the device driver. This programming interface is such that drivers can be built separately from the rest of the kernel, and "plugged in" at runtime when needed. This modularity makes Linux drivers easy to write, to the point that there are now hundreds of them available. 

There are a number of reasons to be interested in the writing of Linux device drivers. The rate at which new hardware becomes available (and obsolete!) alone guarantees that driver writers will be busy for the foreseeable future. Individuals may need to know about drivers in order to gain access to a particular device that is of interest to them. Hardware vendors, by making a Linux driver available for their products, can add the large and growing Linux user base to their potential markets. And the open source nature of the Linux system means that if the driver writer wishes, the source to a driver can be quickly disseminated to millions of users. 

This book will teach you how to write your own drivers and how to hack around in related parts of the kernel. We have taken a device-independent approach; the programming techniques and interfaces are presented, whenever possible, without being tied to any specific device. Each driver is different; as a driver writer, you will need to understand your specific device well. But most of the principles and basic techniques are the same for all drivers. This book cannot teach you about your device, but it will give you a handle on the background you need to make your device work. 

As you learn to write drivers, you will find out a lot about the Linux kernel in general; this may help you understand how your machine works and why things aren't always as fast as you expect or don't do quite what you want. We'll introduce new ideas gradually, starting off with very simple drivers and building upon them; every new concept will be accompanied by sample code that doesn't need special hardware to be tested. 

This chapter doesn't actually get into writing code. However, we introduce some background concepts about the Linux kernel that you'll be glad you know later, when we do launch into programming. 

The Role of the Device Driver

As a programmer, you will be able to make your own choices about your driver, choosing an acceptable trade-off between the programming time required and the flexibility of the result. Though it may appear strange to say that a driver is "flexible," we like this word because it emphasizes that the role of a device driver is providing mechanism, not policy. 

The distinction between mechanism and policy is one of the best ideas behind the Unix design. Most programming problems can indeed be split into two parts: "what capabilities are to be provided" (the mechanism) and "how those capabilities can be used" (the policy). If the two issues are addressed by different parts of the program, or even by different programs altogether, the software package is much easier to develop and to adapt to particular needs. 

For example, Unix management of the graphic display is split between the X server, which knows the hardware and offers a unified interface to user programs, and the window and session managers, which implement a particular policy without knowing anything about the hardware. People can use the same window manager on different hardware, and different users can run different configurations on the same workstation. Even completely different desktop environments, such as KDE and GNOME, can coexist on the same system. Another example is the layered structure of TCP/IP networking: the operating system offers the socket abstraction, which implements no policy regarding the data to be transferred, while different servers are in charge of the services (and their associated policies). Moreover, a server like ftpd provides the file transfer mechanism, while users can use whatever client they prefer; both command-line and graphic clients exist, and anyone can write a new user interface to transfer files. 

Where drivers are concerned, the same separation of mechanism and policy applies. The floppy driver is policy free -- its role is only to show the diskette as a continuous array of data blocks. Higher levels of the system provide policies, such as who may access the floppy drive, whether the drive is accessed directly or via a filesystem, and whether users may mount filesystems on the drive. Since different environments usually need to use hardware in different ways, it's important to be as policy free as possible. 

When writing drivers, a programmer should pay particular attention to this fundamental concept: write kernel code to access the hardware, but don't force particular policies on the user, since different users have different needs. The driver should deal with making the hardware available, leaving all the issues about how to use the hardware to the applications. A driver, then, is flexible if it offers access to the hardware capabilities without adding constraints. Sometimes, however, some policy decisions must be made. For example, a digital I/O driver may only offer byte-wide access to the hardware in order to avoid the extra code needed to handle individual bits. 

You can also look at your driver from a different perspective: it is a software layer that lies between the applications and the actual device. This privileged role of the driver allows the driver programmer to choose exactly how the device should appear: different drivers can offer different capabilities, even for the same device. The actual driver design should be a balance between many different considerations. For instance, a single device may be used concurrently by different programs, and the driver programmer has complete freedom to determine how to handle concurrency. You could implement memory mapping on the device independently of its hardware capabilities, or you could provide a user library to help application programmers implement new policies on top of the available primitives, and so forth. One major consideration is the trade-off between the desire to present the user with as many options as possible and the time in which you have to do the writing as well as the need to keep things simple so that errors don't creep in. 

Policy-free drivers have a number of typical characteristics. These include support for both synchronous and asynchronous operation, the ability to be opened multiple times, the ability to exploit the full capabilities of the hardware, and the lack of software layers to "simplify things" or provide policy-related operations. Drivers of this sort not only work better for their end users, but also turn out to be easier to write and maintain as well. Being policy free is actually a common target for software designers. 

Many device drivers, indeed, are released together with user programs to help with configuration and access to the target device. Those programs can range from simple utilities to complete graphical applications. Examples include the tunelpprogram, which adjusts how the parallel port printer driver operates, and the graphical cardctl utility that is part of the PCMCIA driver package. Often a client library is provided as well, which provides capabilities that do not need to be implemented as part of the driver itself. 

The scope of this book is the kernel, so we'll try not to deal with policy issues, or with application programs or support libraries. Sometimes we'll talk about different policies and how to support them, but we won't go into much detail about programs using the device or the policies they enforce. You should understand, however, that user programs are an integral part of a software package and that even policy-free packages are distributed with configuration files that apply a default behavior to the underlying mechanisms. 

Splitting the Kernel

In a Unix system, several concurrent processesattend to different tasks. Each process asks for system resources, be it computing power, memory, network connectivity, or some other resource. The kernel is the big chunk of executable code in charge of handling all such requests. Though the distinction between the different kernel tasks isn't always clearly marked, the kernel's role can be split, as shown in Figure 1-1, into the following parts: 
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Figure 1-1. A split view of the kernel

Process management 

The kernel is in charge of creating and destroying processes and handling their connection to the outside world (input and output). Communication among different processes (through signals, pipes, or interprocess communication primitives) is basic to the overall system functionality and is also handled by the kernel. In addition, the scheduler, which controls how processes share the CPU, is part of process management. More generally, the kernel's process management activity implements the abstraction of several processes on top of a single CPU or a few of them. 

Memory management 

The computer's memory is a major resource, and the policy used to deal with it is a critical one for system performance. The kernel builds up a virtual addressing space for any and all processes on top of the limited available resources. The different parts of the kernel interact with the memory-management subsystem through a set of function calls, ranging from the simple malloc/free pair to much more exotic functionalities. 

Filesystems 

Unix is heavily based on the filesystem concept; almost everything in Unix can be treated as a file. The kernel builds a structured filesystem on top of unstructured hardware, and the resulting file abstraction is heavily used throughout the whole system. In addition, Linux supports multiple filesystem types, that is, different ways of organizing data on the physical medium. For example, diskettes may be formatted with either the Linux-standard ext2 filesystem or with the commonly used FAT filesystem. 

Device control 

Almost every system operation eventually maps to a physical device. With the exception of the processor, memory, and a very few other entities, any and all device control operations are performed by code that is specific to the device being addressed. That code is called a device driver. The kernel must have embedded in it a device driver for every peripheral present on a system, from the hard drive to the keyboard and the tape streamer. This aspect of the kernel's functions is our primary interest in this book. 

Networking 

Networking must be managed by the operating system because most network operations are not specific to a process: incoming packets are asynchronous events. The packets must be collected, identified, and dispatched before a process takes care of them. The system is in charge of delivering data packets across program and network interfaces, and it must control the execution of programs according to their network activity. Additionally, all the routing and address resolution issues are implemented within the kernel. 

Toward the end of this book, in Chapter 16, "Physical Layout of the Kernel Source", you'll find a road map to the Linux kernel, but these few paragraphs should suffice for now. 

One of the good features of Linux is the ability to extend at runtime the set of features offered by the kernel. This means that you can add functionality to the kernel while the system is up and running. 

Each piece of code that can be added to the kernel at runtime is called a module. The Linux kernel offers support for quite a few different types (or classes) of modules, including, but not limited to, device drivers. Each module is made up of object code (not linked into a complete executable) that can be dynamically linked to the running kernel by the insmod program and can be unlinked by the rmmod program. 

Figure 1-1 identifies different classes of modules in charge of specific tasks -- a module is said to belong to a specific class according to the functionality it offers. The placement of modules in Figure 1-1 covers the most important classes, but is far from complete because more and more functionality in Linux is being modularized. 

Classes of Devices and Modules

The Unix way of looking at devices distinguishes between three device types. Each module usually implements one of these types, and thus is classifiable as a char module, a block module, or a network module. This division of modules into different types, or classes, is not a rigid one; the programmer can choose to build huge modules implementing different drivers in a single chunk of code. Good programmers, nonetheless, usually create a different module for each new functionality they implement, because decomposition is a key element of scalability and extendability. 

The three classes are the following: 

Character devices 

A character (char) device is one that can be accessed as a stream of bytes (like a file); a char driver is in charge of implementing this behavior. Such a driver usually implements at least the open, close, read, and write system calls. The text console (/dev/console) and the serial ports (/dev/ttyS0 and friends) are examples of char devices, as they are well represented by the stream abstraction. Char devices are accessed by means of filesystem nodes, such as /dev/tty1 and /dev/lp0. The only relevant difference between a char device and a regular file is that you can always move back and forth in the regular file, whereas most char devices are just data channels, which you can only access sequentially. There exist, nonetheless, char devices that look like data areas, and you can move back and forth in them; for instance, this usually applies to frame grabbers, where the applications can access the whole acquired image using mmap or lseek. 

Block devices 

Like char devices, block devices are accessed by filesystem nodes in the /dev directory. A block device is something that can host a filesystem, such as a disk. In most Unix systems, a block device can be accessed only as multiples of a block, where a block is usually one kilobyte of data or another power of 2. Linux allows the application to read and write a block device like a char device -- it permits the transfer of any number of bytes at a time. As a result, block and char devices differ only in the way data is managed internally by the kernel, and thus in the kernel/driver software interface. Like a char device, each block device is accessed through a filesystem node and the difference between them is transparent to the user. A block driver offers the kernel the same interface as a char driver, as well as an additional block-oriented interface that is invisible to the user or applications opening the /dev entry points. That block interface, though, is essential to be able to mount a filesystem. 

Network interfaces 

Any network transaction is made through an interface, that is, a device that is able to exchange data with other hosts. Usually, an interface is a hardware device, but it might also be a pure software device, like the loopback interface. A network interface is in charge of sending and receiving data packets, driven by the network subsystem of the kernel, without knowing how individual transactions map to the actual packets being transmitted. Though both Telnet and FTP connections are stream oriented, they transmit using the same device; the device doesn't see the individual streams, but only the data packets. 

Not being a stream-oriented device, a network interface isn't easily mapped to a node in the filesystem, as /dev/tty1is. The Unix way to provide access to interfaces is still by assigning a unique name to them (such as eth0), but that name doesn't have a corresponding entry in the filesystem. Communication between the kernel and a network device driver is completely different from that used with char and block drivers. Instead of read and write, the kernel calls functions related to packet transmission. 

Other classes of driver modules exist in Linux. The modules in each class exploit public services the kernel offers to deal with specific types of devices. Therefore, one can talk of universal serial bus (USB) modules, serial modules, and so on. The most common nonstandard class of devices is that of SCSI[1] drivers. Although every peripheral connected to the SCSI bus appears in /dev as either a char device or a block device, the internal organization of the software is different. 

[1]SCSI is an acronym for Small Computer Systems Interface; it is an established standard in the workstation and high-end server market.

Just as network interface cards provide the network subsystem with hardware-related functionality, so a SCSI controller provides the SCSI subsystem with access to the actual interface cable. SCSI is a communication protocol between the computer and peripheral devices, and every SCSI device responds to the same protocol, independently of what controller board is plugged into the computer. The Linux kernel therefore embeds a SCSI implementation (i.e., the mapping of file operations to the SCSI communication protocol). The driver writer has to implement the mapping between the SCSI abstraction and the physical cable. This mapping depends on the SCSI controller and is independent of the devices attached to the SCSI cable. 

Other classes of device drivers have been added to the kernel in recent times, including USB drivers, FireWire drivers, and I2O drivers. In the same way that they handled SCSI drivers, kernel developers collected class-wide features and exported them to driver implementers to avoid duplicating work and bugs, thus simplifying and strengthening the process of writing such drivers. 

In addition to device drivers, other functionalities, both hardware and software, are modularized in the kernel. Beyond device drivers, filesystems are perhaps the most important class of modules in the Linux system. A filesystem type determines how information is organized on a block device in order to represent a tree of directories and files. Such an entity is not a device driver, in that there's no explicit device associated with the way the information is laid down; the filesystem type is instead a software driver, because it maps the low-level data structures to higher-level data structures. It is the filesystem that determines how long a filename can be and what information about each file is stored in a directory entry. The filesystem module must implement the lowest level of the system calls that access directories and files, by mapping filenames and paths (as well as other information, such as access modes) to data structures stored in data blocks. Such an interface is completely independent of the actual data transfer to and from the disk (or other medium), which is accomplished by a block device driver. 

If you think of how strongly a Unix system depends on the underlying filesystem, you'll realize that such a software concept is vital to system operation. The ability to decode filesystem information stays at the lowest level of the kernel hierarchy and is of utmost importance; even if you write a block driver for your new CD-ROM, it is useless if you are not able to run ls or cp on the data it hosts. Linux supports the concept of a filesystem module, whose software interface declares the different operations that can be performed on a filesystem inode, directory, file, and superblock. It's quite unusual for a programmer to actually need to write a filesystem module, because the official kernel already includes code for the most important filesystem types. 

Security Issues

Security is an increasingly important concern in modern times. We will discuss security-related issues as they come up throughout the book. There are a few general concepts, however, that are worth mentioning now. 

Security has two faces, which can be called deliberate and incidental. One security problem is the damage a user can cause through the misuse of existing programs, or by incidentally exploiting bugs; a different issue is what kind of (mis)functionality a programmer can deliberately implement. The programmer has, obviously, much more power than a plain user. In other words, it's as dangerous to run a program you got from somebody else from the root account as it is to give him or her a root shell now and then. Although having access to a compiler is not a security hole per se, the hole can appear when compiled code is actually executed; everyone should be careful with modules, because a kernel module can do anything. A module is just as powerful as a superuser shell. 

Any security check in the system is enforced by kernel code. If the kernel has security holes, then the system has holes. In the official kernel distribution, only an authorized user can load modules; the system call create_module checks if the invoking process is authorized to load a module into the kernel. Thus, when running an official kernel, only the superuser,[2] or an intruder who has succeeded in becoming privileged, can exploit the power of privileged code. 

[2]Version 2.0 of the kernel allows only the superuser to run privileged code, while version 2.2 has more sophisticated capability checks. We discuss this in "Capabilities and Restricted Operations" in Chapter 5, "Enhanced Char Driver Operations".

When possible, driver writers should avoid encoding security policy in their code. Security is a policy issue that is often best handled at higher levels within the kernel, under the control of the system administrator. There are always exceptions, however. As a device driver writer, you should be aware of situations in which some types of device access could adversely affect the system as a whole, and should provide adequate controls. For example, device operations that affect global resources (such as setting an interrupt line) or that could affect other users (such as setting a default block size on a tape drive) are usually only available to sufficiently privileged users, and this check must be made in the driver itself. 

Driver writers must also be careful, of course, to avoid introducing security bugs. The C programming language makes it easy to make several types of errors. Many current security problems are created, for example, by buffer overrun errors, in which the programmer forgets to check how much data is written to a buffer, and data ends up written beyond the end of the buffer, thus overwriting unrelated data. Such errors can compromise the entire system and must be avoided. Fortunately, avoiding these errors is usually relatively easy in the device driver context, in which the interface to the user is narrowly defined and highly controlled. 

Some other general security ideas are worth keeping in mind. Any input received from user processes should be treated with great suspicion; never trust it unless you can verify it. Be careful with uninitialized memory; any memory obtained from the kernel should be zeroed or otherwise initialized before being made available to a user process or device. Otherwise, information leakage could result. If your device interprets data sent to it, be sure the user cannot send anything that could compromise the system. Finally, think about the possible effect of device operations; if there are specific operations (e.g., reloading the firmware on an adapter board, formatting a disk) that could affect the system, those operations should probably be restricted to privileged users. 

Be careful, also, when receiving software from third parties, especially when the kernel is concerned: because everybody has access to the source code, everybody can break and recompile things. Although you can usually trust precompiled kernels found in your distribution, you should avoid running kernels compiled by an untrusted friend -- if you wouldn't run a precompiled binary as root, then you'd better not run a precompiled kernel. For example, a maliciously modified kernel could allow anyone to load a module, thus opening an unexpected back door via create_module. 

Note that the Linux kernel can be compiled to have no module support whatsoever, thus closing any related security holes. In this case, of course, all needed drivers must be built directly into the kernel itself. It is also possible, with 2.2 and later kernels, to disable the loading of kernel modules after system boot, via the capability mechanism. 

Version Numbering

Before digging into programming, we'd like to comment on the version numbering scheme used in Linux and which versions are covered by this book. 

First of all, note that every software package used in a Linux system has its own release number, and there are often interdependencies across them: you need a particular version of one package to run a particular version of another package. The creators of Linux distributions usually handle the messy problem of matching packages, and the user who installs from a prepackaged distribution doesn't need to deal with version numbers. Those who replace and upgrade system software, on the other hand, are on their own. Fortunately, almost all modern distributions support the upgrade of single packages by checking interpackage dependencies; the distribution's package manager generally will not allow an upgrade until the dependencies are satisfied. 

To run the examples we introduce during the discussion, you won't need particular versions of any tool but the kernel; any recent Linux distribution can be used to run our examples. We won't detail specific requirements, because the file Documentation/Changes in your kernel sources is the best source of such information if you experience any problem. 

As far as the kernel is concerned, the even-numbered kernel versions (i.e., 2.2.x and 2.4.x) are the stable ones that are intended for general distribution. The odd versions (such as 2.3.x), on the contrary, are development snapshots and are quite ephemeral; the latest of them represents the current status of development, but becomes obsolete in a few days or so. 

This book covers versions 2.0 through 2.4 of the kernel. Our focus has been to show all the features available to device driver writers in 2.4, the current version at the time we are writing. We also try to cover 2.2 thoroughly, in those areas where the features differ between 2.2 and 2.4. We also note features that are not available in 2.0, and offer workarounds where space permits. In general, the code we show is designed to compile and run on a wide range of kernel versions; in particular, it has all been tested with version 2.4.4, and, where applicable, with 2.2.18 and 2.0.38 as well. 

This text doesn't talk specifically about odd-numbered kernel versions. General users will never have a reason to run development kernels. Developers experimenting with new features, however, will want to be running the latest development release. They will usually keep upgrading to the most recent version to pick up bug fixes and new implementations of features. Note, however, that there's no guarantee on experimental kernels,[3] and nobody will help you if you have problems due to a bug in a noncurrent odd-numbered kernel. Those who run odd-numbered versions of the kernel are usually skilled enough to dig in the code without the need for a textbook, which is another reason why we don't talk about development kernels here. 

[3]Note that there's no guarantee on even-numbered kernels as well, unless you rely on a commercial provider that grants its own warranty.

Another feature of Linux is that it is a platform-independent operating system, not just "a Unix clone for PC clones" anymore: it is successfully being used with Alpha and SPARC processors, 68000 and PowerPC platforms, as well as a few more. This book is platform independent as far as possible, and all the code samples have been tested on several platforms, such as the PC brands, Alpha, ARM, IA-64, M68k, PowerPC, SPARC, SPARC64, and VR41xx (MIPS). Because the code has been tested on both 32-bit and 64-bit processors, it should compile and run on all other platforms. As you might expect, the code samples that rely on particular hardware don't work on all the supported platforms, but this is always stated in the source code. 

License Terms

Linux is licensed with the GNU General Public License (GPL), a document devised for the GNU project by the Free Software Foundation. The GPL allows anybody to redistribute, and even sell, a product covered by the GPL, as long as the recipient is allowed to rebuild an exact copy of the binary files from source. Additionally, any software product derived from a product covered by the GPL must, if it is redistributed at all, be released under the GPL. 

The main goal of such a license is to allow the growth of knowledge by permitting everybody to modify programs at will; at the same time, people selling software to the public can still do their job. Despite this simple objective, there's a never-ending discussion about the GPL and its use. If you want to read the license, you can find it in several places in your system, including the directory /usr/src/linux, as a file called COPYING. 

Third-party and custom modules are not part of the Linux kernel, and thus you're not forced to license them under the GPL. A module uses the kernel through a well-defined interface, but is not part of it, similar to the way user programs use the kernel through system calls. Note that the exemption to GPL licensing applies only to modules that use only the published module interface. Modules that dig deeper into the kernel must adhere to the "derived work" terms of the GPL. 

In brief, if your code goes in the kernel, you must use the GPL as soon as you release the code. Although personal use of your changes doesn't force the GPL on you, if you distribute your code you must include the source code in the distribution -- people acquiring your package must be allowed to rebuild the binary at will. If you write a module, on the other hand, you are allowed to distribute it in binary form. However, this is not always practical, as modules should in general be recompiled for each kernel version that they will be linked with (as explained in Chapter 2, "Building and Running Modules", in the section "Version Dependency", and Chapter 11, "kmod and Advanced Modularization", in the section "Version Control in Modules"). New kernel releases -- even minor stable releases -- often break compiled modules, requiring a recompile. Linus Torvalds has stated publicly that he has no problem with this behavior, and that binary modules should be expected to work only with the kernel under which they were compiled. As a module writer, you will generally serve your users better by making source available. 

As far as this book is concerned, most of the code is freely redistributable, either in source or binary form, and neither we nor O'Reilly & Associates retain any right on any derived works. All the programs are available from http://examples.oreilly.com/linuxdrive2/, and the exact license terms are stated in the file LICENSE in the same directory. 

When sample programs include parts of the kernel code, the GPL applies: the comments accompanying source code are very clear about that. This only happens for a pair of source files that are very minor to the topic of this book. 

Joining the Kernel Development Community

As you get into writing modules for the Linux kernel, you become part of a larger community of developers. Within that community, you can find not only people engaged in similar work, but also a group of highly committed engineers working toward making Linux a better system. These people can be a source of help, of ideas, and of critical review as well -- they will be the first people you will likely turn to when you are looking for testers for a new driver. 

The central gathering point for Linux kernel developers is the linux-kernel mailing list. All major kernel developers, from Linus Torvalds on down, subscribe to this list. Please note that the list is not for the faint of heart: traffic as of this writing can run up to 200 messages per day or more. Nonetheless, following this list is essential for those who are interested in kernel development; it also can be a top-quality resource for those in need of kernel development help. 

To join the linux-kernel list, follow the instructions found in the linux-kernel mailing list FAQ: http://www.tux.org/lkml. Please read the rest of the FAQ while you are at it; there is a great deal of useful information there. Linux kernel developers are busy people, and they are much more inclined to help people who have clearly done their homework first. 

Overview of the Book

From here on, we enter the world of kernel programming. Chapter 2, "Building and Running Modules" introduces modularization, explaining the secrets of the art and showing the code for running modules. Chapter 3, "Char Drivers" talks about char drivers and shows the complete code for a memory-based device driver that can be read and written for fun. Using memory as the hardware base for the device allows anyone to run the sample code without the need to acquire special hardware. 

Debugging techniques are vital tools for the programmer and are introduced in Chapter 4, "Debugging Techniques". Then, with our new debugging skills, we move to advanced features of char drivers, such as blocking operations, the use of select, and the important ioctl call; these topics are the subject of Chapter 5, "Enhanced Char Driver Operations". 

Before dealing with hardware management, we dissect a few more of the kernel's software interfaces: Chapter 6, "Flow of Time" shows how time is managed in the kernel, and Chapter 7, "Getting Hold of Memory" explains memory allocation. 

Next we focus on hardware. Chapter 8, "Hardware Management" describes the management of I/O ports and memory buffers that live on the device; after that comes interrupt handling, in Chapter 9, "Interrupt Handling". Unfortunately, not everyone will be able to run the sample code for these chapters, because some hardware support isactually needed to test the software interface to interrupts. We've tried our best to keep required hardware support to a minimum, but you still need to put your hands on the soldering iron to build your hardware "device." The device is a single jumper wire that plugs into the parallel port, so we hope this is not a problem. 

Chapter 10, "Judicious Use of Data Types" offers some additional suggestions about writing kernel software and about portability issues. 

In the second part of this book, we get more ambitious; thus, Chapter 11, "kmod and Advanced Modularization" starts over with modularization issues, going deeper into the topic. 

Chapter 12, "Loading Block Drivers" then describes how block drivers are implemented, outlining the aspects that differentiate them from char drivers. Following that, Chapter 13, "mmap and DMA" explains what we left out from the previous treatment of memory management: mmap and direct memory access (DMA). At this point, everything about char and block drivers has been introduced. 

The third main class of drivers is introduced next. Chapter 14, "Network Drivers" talks in some detail about network interfaces and dissects the code of the sample network driver. 

A few features of device drivers depend directly on the interface bus where the peripheral fits, so Chapter 15, "Overview of Peripheral Buses" provides an overview of the main features of the bus implementations most frequently found nowadays, with a special focus on PCI and USB support offered in the kernel. 

Finally, Chapter 16, "Physical Layout of the Kernel Source" is a tour of the kernel source: it is meant to be a starting point for people who want to understand the overall design, but who may be scared by the huge amount of source code that makes up Linux. 

Chapter 2 
Building and Running Modules

Contents:

Kernel Modules Versus Applications 
Compiling and Loading 
The Kernel Symbol Table 
Initialization and Shutdown 
Using Resources 
Automatic and Manual Configuration 
Doing It in User Space 
Backward Compatibility 
Quick Reference 

It's high time now to begin programming. This chapter introduces all the essential concepts about modules and kernel programming. In these few pages, we build and run a complete module. Developing such expertise is an essential foundation for any kind of modularized driver. To avoid throwing in too many concepts at once, this chapter talks only about modules, without referring to any specific device class. 

All the kernel items (functions, variables, header files, and macros) that are introduced here are described in a reference section at the end of the chapter. 

For the impatient reader, the following code is a complete "Hello, World" module (which does nothing in particular). This code will compile and run under Linux kernel versions 2.0 through 2.4.[4] 

[4]This example, and all the others presented in this book, is available on the O'Reilly FTP site, as explained in Chapter 1, "An Introduction to Device Drivers".

#define MODULE

#include <linux/module.h>

int init_module(void)  { printk("<1>Hello, world\n"); return 0; }

void cleanup_module(void) { printk("<1>Goodbye cruel world\n"); }

The printk function is defined in the Linux kernel and behaves similarly to the standard C library function printf. The kernel needs its own printing function because it runs by itself, without the help of the C library. The module can call printk because, after insmod has loaded it, the module is linked to the kernel and can access the kernel's public symbols (functions and variables, as detailed in the next section). The string <1> is the priority of the message. We've specified a high priority (low cardinal number) in this module because a message with the default priority might not show on the console, depending on the kernel version you are running, the version of the klogd daemon, and your configuration. You can ignore this issue for now; we'll explain it in the section "printk" in Chapter 4, "Debugging Techniques". 

You can test the module by calling insmodand rmmod, as shown in the screen dump in the following paragraph. Note that only the superuser can load and unload a module. 

The source file shown earlier can be loaded and unloaded as shown only if the running kernel has module version support disabled; however, most distributions preinstall versioned kernels (versioning is discussed in "Version Control in Modules" in Chapter 11, "kmod and Advanced Modularization"). Although older modutils allowed loading nonversioned modules to versioned kernels, this is no longer possible. To solve the problem with hello.c, the source in the misc-modules directory of the sample code includes a few more lines to be able to run both under versioned and nonversioned kernels. However, we strongly suggest you compile and run your own kernel (without version support) before you run the sample code.[5] 

[5]If you are new to building kernels, Alessandro has posted an article at http://www.linux.it/kerneldocs/kconf that should help you get started.

root# gcc -c hello.c
root# insmod ./hello.o
Hello, world

root# rmmod hello
Goodbye cruel world

root#

According to the mechanism your system uses to deliver the message lines, your output may be different. In particular, the previous screen dump was taken from a text console; if you are running insmod and rmmodfrom an xterm, you won't see anything on your TTY. Instead, it may go to one of the system log files, such as /var/log/messages (the name of the actual file varies between Linux distributions). The mechanism used to deliver kernel messages is described in "How Messages Get Logged" in Chapter 4, "Debugging Techniques". 

As you can see, writing a module is not as difficult as you might expect. The hard part is understanding your device and how to maximize performance. We'll go deeper into modularization throughout this chapter and leave device-specific issues to later chapters. 

Kernel Modules Versus Applications

Before we go further, it's worth underlining the various differences between a kernel module and an application. 

Whereas an application performs a single task from beginning to end, a module registers itself in order to serve future requests, and its "main" function terminates immediately. In other words, the task of the function init_module (the module's entry point) is to prepare for later invocation of the module's functions; it's as though the module were saying, "Here I am, and this is what I can do." The second entry point of a module, cleanup_module, gets invoked just before the module is unloaded. It should tell the kernel, "I'm not there anymore; don't ask me to do anything else." The ability to unload a module is one of the features of modularization that you'll most appreciate, because it helps cut down development time; you can test successive versions of your new driver without going through the lengthy shutdown/reboot cycle each time. 

As a programmer, you know that an application can call functions it doesn't define: the linking stage resolves external references using the appropriate library of functions. printf is one of those callable functions and is defined in libc. A module, on the other hand, is linked only to the kernel, and the only functions it can call are the ones exported by the kernel; there are no libraries to link to. The printk function used in hello.c earlier, for example, is the version of printf defined within the kernel and exported to modules. It behaves similarly to the original function, with a few minor differences, the main one being lack of floating-point support.[6] 

[6]The implementation found in Linux 2.0 and 2.2 has no support for the L and Z qualifiers. They have been introduced in 2.4, though.

Figure 2-1 shows how function calls and function pointers are used in a module to add new functionality to a running kernel. 
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Figure 2-1. Linking a module to the kernel

Because no library is linked to modules, source files should never include the usual header files. Only functions that are actually part of the kernel itself may be used in kernel modules. Anything related to the kernel is declared in headers found in include/linux and include/asm inside the kernel sources (usually found in /usr/src/linux). Older distributions (based on libc version 5 or earlier) used to carry symbolic links from /usr/include/linuxand /usr/include/asm to the actual kernel sources, so your libc include tree could refer to the headers of the actual kernel source you had installed. These symbolic links made it convenient for user-space applications to include kernel header files, which they occasionally need to do. 

Even though user-space headers are now separate from kernel-space headers, sometimes applications still include kernel headers, either before an old library is used or before new information is needed that is not available in the user-space headers. However, many of the declarations in the kernel header files are relevant only to the kernel itself and should not be seen by user-space applications. These declarations are therefore protected by #ifdef __KERNEL__ blocks. That's why your driver, like other kernel code, will need to be compiled with the __KERNEL__ preprocessor symbol defined. 

The role of individual kernel headers will be introduced throughout the book as each of them is needed. 

Developers working on any large software system (such as the kernel) must be aware of and avoid namespace pollution. Namespace pollution is what happens when there are many functions and global variables whose names aren't meaningful enough to be easily distinguished. The programmer who is forced to deal with such an application expends much mental energy just to remember the "reserved" names and to find unique names for new symbols. Namespace collisions can create problems ranging from module loading failures to bizarre failures -- which, perhaps, only happen to a remote user of your code who builds a kernel with a different set of configuration options. 

Developers can't afford to fall into such an error when writing kernel code because even the smallest module will be linked to the whole kernel. The best approach for preventing namespace pollution is to declare all your symbols as static and to use a prefix that is unique within the kernel for the symbols you leave global. Also note that you, as a module writer, can control the external visibility of your symbols, as described in "The Kernel Symbol Table" later in this chapter.[7] 

[7]Most versions of insmod (but not all of them) export all non-static symbols if they find no specific instruction in the module; that's why it's wise to declare as static all the symbols you are not willing to export.

Using the chosen prefix for private symbols within the module may be a good practice as well, as it may simplify debugging. While testing your driver, you could export all the symbols without polluting your namespace. Prefixes used in the kernel are, by convention, all lowercase, and we'll stick to the same convention. 

The last difference between kernel programming and application programming is in how each environment handles faults: whereas a segmentation fault is harmless during application development and a debugger can always be used to trace the error to the problem in the source code, a kernel fault is fatal at least for the current process, if not for the whole system. We'll see how to trace kernel errors in Chapter 4, "Debugging Techniques", in the section "Debugging System Faults". 

User Space and Kernel Space

A module runs in the so-called kernel space, whereas applications run in user space. This concept is at the base of operating systems theory. 

The role of the operating system, in practice, is to provide programs with a consistent view of the computer's hardware. In addition, the operating system must account for independent operation of programs and protection against unauthorized access to resources. This nontrivial task is only possible if the CPU enforces protection of system software from the applications. 

Every modern processor is able to enforce this behavior. The chosen approach is to implement different operating modalities (or levels) in the CPU itself. The levels have different roles, and some operations are disallowed at the lower levels; program code can switch from one level to another only through a limited number of gates. Unix systems are designed to take advantage of this hardware feature, using two such levels. All current processors have at least two protection levels, and some, like the x86 family, have more levels; when several levels exist, the highest and lowest levels are used. Under Unix, the kernel executes in the highest level (also called supervisor mode), where everything is allowed, whereas applications execute in the lowest level (the so-called user mode), where the processor regulates direct access to hardware and unauthorized access to memory. 

We usually refer to the execution modes as kernel space and user space. These terms encompass not only the different privilege levels inherent in the two modes, but also the fact that each mode has its own memory mapping -- its own address space -- as well. 

Unix transfers execution from user space to kernel space whenever an application issues a system call or is suspended by a hardware interrupt. Kernel code executing a system call is working in the context of a process -- it operates on behalf of the calling process and is able to access data in the process's address space. Code that handles interrupts, on the other hand, is asynchronous with respect to processes and is not related to any particular process. 

The role of a module is to extend kernel functionality; modularized code runs in kernel space. Usually a driver performs both the tasks outlined previously: some functions in the module are executed as part of system calls, and some are in charge of interrupt handling. 

Concurrency in the Kernel

One way in which device driver programming differs greatly from (most) application programming is the issue of concurrency. An application typically runs sequentially, from the beginning to the end, without any need to worry about what else might be happening to change its environment. Kernel code does not run in such a simple world and must be written with the idea that many things can be happening at once. 

There are a few sources of concurrency in kernel programming. Naturally, Linux systems run multiple processes, more than one of which can be trying to use your driver at the same time. Most devices are capable of interrupting the processor; interrupt handlers run asynchronously and can be invoked at the same time that your driver is trying to do something else. Several software abstractions (such as kernel timers, introduced in Chapter 6, "Flow of Time") run asynchronously as well. Moreover, of course, Linux can run on symmetric multiprocessor (SMP) systems, with the result that your driver could be executing concurrently on more than one CPU. 

As a result, Linux kernel code, including driver code, must be reentrant -- it must be capable of running in more than one context at the same time. Data structures must be carefully designed to keep multiple threads of execution separate, and the code must take care to access shared data in ways that prevent corruption of the data. Writing code that handles concurrency and avoids race conditions (situations in which an unfortunate order of execution causes undesirable behavior) requires thought and can be tricky. Every sample driver in this book has been written with concurrency in mind, and we will explain the techniques we use as we come to them. 

A common mistake made by driver programmers is to assume that concurrency is not a problem as long as a particular segment of code does not go to sleep (or "block"). It is true that the Linux kernel is nonpreemptive; with the important exception of servicing interrupts, it will not take the processor away from kernel code that does not yield willingly. In past times, this nonpreemptive behavior was enough to prevent unwanted concurrency most of the time. On SMP systems, however, preemption is not required to cause concurrent execution. 

If your code assumes that it will not be preempted, it will not run properly on SMP systems. Even if you do not have such a system, others who run your code may have one. In the future, it is also possible that the kernel will move to a preemptive mode of operation, at which point even uniprocessor systems will have to deal with concurrency everywhere (some variants of the kernel already implement it). Thus, a prudent programmer will always program as if he or she were working on an SMP system. 

The Current Process

Although kernel modules don't execute sequentially as applications do, most actions performed by the kernel are related to a specific process. Kernel code can know the current process driving it by accessing the global item current, a pointer to struct task_struct, which as of version 2.4 of the kernel is declared in <asm/current.h>, included by <linux/sched.h>. The current pointer refers to the user process currently executing. During the execution of a system call, such as open or read, the current process is the one that invoked the call. Kernel code can use process-specific information by using current, if it needs to do so. An example of this technique is presented in "Access Control on a Device File", in Chapter 5, "Enhanced Char Driver Operations". 

Actually, current is not properly a global variable any more, like it was in the first Linux kernels. The developers optimized access to the structure describing the current process by hiding it in the stack page. You can look at the details of current in <asm/current.h>. While the code you'll look at might seem hairy, we must keep in mind that Linux is an SMP-compliant system, and a global variable simply won't work when you are dealing with multiple CPUs. The details of the implementation remain hidden to other kernel subsystems though, and a device driver can just include <linux/sched.h> and refer to the current process. 

From a module's point of view, current is just like the external reference printk. A module can refer to current wherever it sees fit. For example, the following statement prints the process ID and the command name of the current process by accessing certain fields in struct task_struct: 

 printk("The process is \"%s\" (pid %i)\n",

  current->comm, current->pid);

The command name stored in current->comm is the base name of the program file that is being executed by the current process. 

Compiling and Loading

The rest of this chapter is devoted to writing a complete, though typeless, module. That is, the module will not belong to any of the classes listed in "Classes of Devices and Modules" in Chapter 1, "An Introduction to Device Drivers". The sample driver shown in this chapter is called skull, short for Simple Kernel Utility for Loading Localities. You can reuse the skull source to load your own local code to the kernel, after removing the sample functionality it offers.[8] 

[8]We use the word local here to denote personal changes to the system, in the good old Unix tradition of /usr/local.

Before we deal with the roles of init_module and cleanup_module, however, we'll write a makefile that builds object code that the kernel can load. 

First, we need to define the __KERNEL__ symbol in the preprocessor before we include any headers. As mentioned earlier, much of the kernel-specific content in the kernel headers is unavailable without this symbol. 

Another important symbol is MODULE, which must be defined before including <linux/module.h> (except for drivers that are linked directly into the kernel). This book does not cover directly linked modules; thus, the MODULE symbol is always defined in our examples. 

If you are compiling for an SMP machine, you also need to define __SMP__ before including the kernel headers. In version 2.2, the "multiprocessor or uniprocessor" choice was promoted to a proper configuration item, so using these lines as the very first lines of your modules will do the task: 

 #include <linux/config.h>

 #ifdef CONFIG_SMP

 # define __SMP__

 #endif

A module writer must also specify the -Oflag to the compiler, because many functions are declared as inline in the header files. gcc doesn't expand inline functions unless optimization is enabled, but it can accept both the -g and -Ooptions, allowing you to debug code that uses inline functions.[9] Because the kernel makes extensive use of inline functions, it is important that they be expanded properly. 

[9] Note, however, that using any optimization greater than -O2 is risky, because the compiler might inline functions that are not declared as inline in the source. This may be a problem with kernel code, because some functions expect to find a standard stack layout when they are called.

You may also need to check that the compiler you are running matches the kernel you are compiling against, referring to the file Documentation/Changes in the kernel source tree. The kernel and the compiler are developed at the same time, though by different groups, so sometimes changes in one tool reveal bugs in the other. Some distributions ship a version of the compiler that is too new to reliably build the kernel. In this case, they will usually provide a separate package (often called kgcc) with a compiler intended for kernel compilation. 

Finally, in order to prevent unpleasant errors, we suggest that you use the -Wall (all warnings) compiler flag, and also that you fix all features in your code that cause compiler warnings, even if this requires changing your usual programming style. When writing kernel code, the preferred coding style is undoubtedly Linus's own style. Documentation/CodingStyle is amusing reading and a mandatory lesson for anyone interested in kernel hacking. 

All the definitions and flags we have introduced so far are best located within the CFLAGS variable used by make. 

In addition to a suitable CFLAGS, the makefile being built needs a rule for joining different object files. The rule is needed only if the module is split into different source files, but that is not uncommon with modules. The object files are joined by the ld -r command, which is not really a linking operation, even though it uses the linker. The output of ld -r is another object file, which incorporates all the code from the input files. The -r option means "relocatable;" the output file is relocatable in that it doesn't yet embed absolute addresses. 

The following makefile is a minimal example showing how to build a module made up of two source files. If your module is made up of a single source file, just skip the entry containing ld -r. 

 # Change it here or specify it on the "make" command line

 KERNELDIR = /usr/src/linux

 include $(KERNELDIR)/.config

 CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \

   -O -Wall

 ifdef CONFIG_SMP

  CFLAGS += -D__SMP__ -DSMP

 endif

 all: skull.o

 skull.o: skull_init.o skull_clean.o

   $(LD) -r $^ -o $@

 clean:

   rm -f *.o *~ core

If you are not familiar with make, you may wonder why no .c file and no compilation rule appear in the makefile shown. These declarations are unnecessary because make is smart enough to turn .c into .o without being instructed to, using the current (or default) choice for the compiler, $(CC), and its flags, $(CFLAGS). 

After the module is built, the next step is loading it into the kernel. As we've already suggested, insmoddoes the job for you. The program is like ld, in that it links any unresolved symbol in the module to the symbol table of the running kernel. Unlike the linker, however, it doesn't modify the disk file, but rather an in-memory copy. insmod accepts a number of command-line options (for details, see the manpage), and it can assign values to integer and string variables in your module before linking it to the current kernel. Thus, if a module is correctly designed, it can be configured at load time; load-time configuration gives the user more flexibility than compile-time configuration, which is still used sometimes. Load-time configuration is explained in "Automatic and Manual Configuration" later in this chapter. 

Interested readers may want to look at how the kernel supports insmod: it relies on a few system calls defined in kernel/module.c. The function sys_create_module allocates kernel memory to hold a module (this memory is allocated with vmalloc; see "vmalloc and Friends" in Chapter 7, "Getting Hold of Memory"). The system call get_kernel_syms returns the kernel symbol table so that kernel references in the module can be resolved, and sys_init_module copies the relocated object code to kernel space and calls the module's initialization function. 

If you actually look in the kernel source, you'll find that the names of the system calls are prefixed with sys_. This is true for all system calls and no other functions; it's useful to keep this in mind when grepping for the system calls in the sources. 

Version Dependency

Bear in mind that your module's code has to be recompiled for each version of the kernel that it will be linked to. Each module defines a symbol called __module_kernel_version, which insmod matches against the version number of the current kernel. This symbol is placed in the .modinfo Executable Linking and Format (ELF) section, as explained in detail in Chapter 11, "kmod and Advanced Modularization". Please note that this description of the internals applies only to versions 2.2 and 2.4 of the kernel; Linux 2.0 did the same job in a different way. 

The compiler will define the symbol for you whenever you include <linux/module.h> (that's why hello.c earlier didn't need to declare it). This also means that if your module is made up of multiple source files, you have to include <linux/module.h> from only one of your source files (unless you use __NO_VERSION__, which we'll introduce in a while). 

In case of version mismatch, you can still try to load a module against a different kernel version by specifying the -f ("force") switch to insmod, but this operation isn't safe and can fail. It's also difficult to tell in advance what will happen. Loading can fail because of mismatching symbols, in which case you'll get an error message, or it can fail because of an internal change in the kernel. If that happens, you'll get serious errors at runtime and possibly a system panic -- a good reason to be wary of version mismatches. Version mismatches can be handled more gracefully by using versioning in the kernel (a topic that is more advanced and is introduced in "Version Control in Modules" in Chapter 11, "kmod and Advanced Modularization"). 

If you want to compile your module for a particular kernel version, you have to include the specific header files for that kernel (for example, by declaring a different KERNELDIR) in the makefile given previously. This situation is not uncommon when playing with the kernel sources, as most of the time you'll end up with several versions of the source tree. All of the sample modules accompanying this book use the KERNELDIR variable to point to the correct kernel sources; it can be set in your environment or passed on the command line of make. 

When asked to load a module, insmod follows its own search path to look for the object file, looking in version-dependent directories under /lib/modules. Although older versions of the program looked in the current directory, first, that behavior is now disabled for security reasons (it's the same problem of the PATH environment variable). Thus, if you need to load a module from the current directory you should use ./module.o, which works with all known versions of the tool. 

Sometimes, you'll encounter kernel interfaces that behave differently between versions 2.0.x and 2.4.x of Linux. In this case you'll need to resort to the macros defining the version number of the current source tree, which are defined in the header <linux/version.h>. We will point out cases where interfaces have changed as we come to them, either within the chapter or in a specific section about version dependencies at the end, to avoid complicating a 2.4-specific discussion. 

The header, automatically included by linux/module.h, defines the following macros: 

UTS_RELEASE 

The macro expands to a string describing the version of this kernel tree. For example, "2.3.48". 

LINUX_VERSION_CODE 

The macro expands to the binary representation of the kernel version, one byte for each part of the version release number. For example, the code for 2.3.48 is 131888 (i.e., 0x020330).[10] With this information, you can (almost) easily determine what version of the kernel you are dealing with. 

[10]This allows up to 256 development versions between stable versions.

KERNEL_VERSION(major,minor,release) 

This is the macro used to build a "kernel_version_code" from the individual numbers that build up a version number. For example, KERNEL_VERSION(2,3,48) expands to 131888. This macro is very useful when you need to compare the current version and a known checkpoint. We'll use this macro several times throughout the book. 

The file version.h is included by module.h, so you won't usually need to include version.h explicitly. On the other hand, you can prevent module.h from including version.h by declaring __NO_VERSION__ in advance. You'll use __NO_VERSION__ if you need to include <linux/module.h> in several source files that will be linked together to form a single module -- for example, if you need preprocessor macros declared in module.h. Declaring __NO_VERSION__ before including module.h prevents automatic declaration of the string __module_kernel_version or its equivalent in source files where you don't want it (ld -r would complain about the multiple definition of the symbol). Sample modules in this book use __NO_VERSION__ to this end. 

Most dependencies based on the kernel version can be worked around with preprocessor conditionals by exploiting KERNEL_VERSION and LINUX_VERSION_CODE. Version dependency should, however, not clutter driver code with hairy #ifdef conditionals; the best way to deal with incompatibilities is by confining them to a specific header file. That's why our sample code includes a sysdep.h header, used to hide all incompatibilities in suitable macro definitions. 

The first version dependency we are going to face is in the definition of a "make install" rule for our drivers. As you may expect, the installation directory, which varies according to the kernel version being used, is chosen by looking in version.h. The following fragment comes from the file Rules.make, which is included by all makefiles: 

VERSIONFILE = $(INCLUDEDIR)/linux/version.h

VERSION  = $(shell awk -F\" '/REL/ {print $$2}' $(VERSIONFILE))

INSTALLDIR = /lib/modules/$(VERSION)/misc

We chose to install all of our drivers in the misc directory; this is both the right choice for miscellaneous add-ons and a good way to avoid dealing with the change in the directory structure under /lib/modulesthat was introduced right before version 2.4 of the kernel was released. Even though the new directory structure is more complicated, the misc directory is used by both old and new versions of the modutils package. 

With the definition of INSTALLDIR just given, the install rule of each makefile, then, is laid out like this: 

install:


install -d $(INSTALLDIR)


install -c $(OBJS) $(INSTALLDIR)

Platform Dependency

Each computer platform has its peculiarities, and kernel designers are free to exploit all the peculiarities to achieve better performance in the target object file. 

Unlike application developers, who must link their code with precompiled libraries and stick to conventions on parameter passing, kernel developers can dedicate some processor registers to specific roles, and they have done so. Moreover, kernel code can be optimized for a specific processor in a CPU family to get the best from the target platform: unlike applications that are often distributed in binary format, a custom compilation of the kernel can be optimized for a specific computer set. 

Modularized code, in order to be interoperable with the kernel, needs to be compiled using the same options used in compiling the kernel (i.e., reserving the same registers for special use and performing the same optimizations). For this reason, our top-level Rules.make includes a platform-specific file that complements the makefiles with extra definitions. All of those files are called Makefile.platform and assign suitable values to make variables according to the current kernel configuration. 

Another interesting feature of this layout of makefiles is that cross compilation is supported for the whole tree of sample files. Whenever you need to cross compile for your target platform, you'll need to replace all of your tools (gcc, ld, etc.) with another set of tools (for example, m68k-linux-gcc, m68k-linux-ld). The prefix to be used is defined as $(CROSS_COMPILE), either in the make command line or in your environment. 

The SPARC architecture is a special case that must be handled by the makefiles. User-space programs running on the SPARC64 (SPARC V9) platform are the same binaries you run on SPARC32 (SPARC V8). Therefore, the default compiler running on SPARC64 (gcc) generates SPARC32 object code. The kernel, on the other hand, must run SPARC V9 object code, so a cross compiler is needed. All GNU/Linux distributions for SPARC64 include a suitable cross compiler, which the makefiles select. 

Although the complete list of version and platform dependencies is slightly more complicated than shown here, the previous description and the set of makefiles we provide is enough to get things going. The set of makefiles and the kernel sources can be browsed if you are looking for more detailed information. 

The Kernel Symbol Table

We've seen how insmod resolves undefined symbols against the table of public kernel symbols. The table contains the addresses of global kernel items -- functions and variables -- that are needed to implement modularized drivers. The public symbol table can be read in text form from the file /proc/ksyms (assuming, of course, that your kernel has support for the /procfilesystem -- which it really should). 

When a module is loaded, any symbol exported by the module becomes part of the kernel symbol table, and you can see it appear in /proc/ksyms or in the output of the ksyms command. 

New modules can use symbols exported by your module, and you can stack new modules on top of other modules. Module stacking is implemented in the mainstream kernel sources as well: the msdos filesystem relies on symbols exported by the fat module, and each input USB device module stacks on the usbcore and input modules. 

Module stacking is useful in complex projects. If a new abstraction is implemented in the form of a device driver, it might offer a plug for hardware-specific implementations. For example, the video-for-linux set of drivers is split into a generic module that exports symbols used by lower-level device drivers for specific hardware. According to your setup, you load the generic video module and the specific module for your installed hardware. Support for parallel ports and the wide variety of attachable devices is handled in the same way, as is the USB kernel subsystem. Stacking in the parallel port subsystem is shown in Figure 2-2; the arrows show the communications between the modules (with some example functions and data structures) and with the kernel programming interface. 
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Figure 2-2. Stacking of parallel port driver modules

When using stacked modules, it is helpful to be aware of the modprobeutility. modprobe functions in much the same way as insmod, but it also loads any other modules that are required by the module you want to load. Thus, one modprobe command can sometimes replace several invocations of insmod (although you'll still need insmod when loading your own modules from the current directory, because modprobeonly looks in the tree of installed modules). 

Layered modularization can help reduce development time by simplifying each layer. This is similar to the separation between mechanism and policy that we discussed in Chapter 1, "An Introduction to Device Drivers". 

In the usual case, a module implements its own functionality without the need to export any symbols at all. You will need to export symbols, however, whenever other modules may benefit from using them. You may also need to include specific instructions to avoid exporting all non-static symbols, as most versions (but not all) of modutils export all of them by default. 

The Linux kernel header files provide a convenient way to manage the visibility of your symbols, thus reducing namespace pollution and promoting proper information hiding. The mechanism described in this section works with kernels 2.1.18 and later; the 2.0 kernel had a completely different mechanism, which is described at the end of the chapter. 

If your module exports no symbols at all, you might want to make that explicit by placing a line with this macro call in your source file: 

 EXPORT_NO_SYMBOLS;

The macro expands to an assembler directive and may appear anywhere within the module. Portable code, however, should place it within the module initialization function (init_module), because the version of this macro defined in sysdep.h for older kernels will work only there. 

If, on the other hand, you need to export a subset of symbols from your module, the first step is defining the preprocessor macro EXPORT_SYMTAB. This macro must be defined before including module.h. It is common to define it at compile time with the -D compiler flag in Makefile. 

If EXPORT_SYMTAB is defined, individual symbols are exported with a couple of macros: 

 EXPORT_SYMBOL (name);

 EXPORT_SYMBOL_NOVERS (name);

Either version of the macro will make the given symbol available outside the module; the second version (EXPORT_SYMBOL_NOVERS) exports the symbol with no versioning information (described in Chapter 11, "kmod and Advanced Modularization"). Symbols must be exported outside of any function because the macros expand to the declaration of a variable. (Interested readers can look at <linux/module.h> for the details, even though the details are not needed to make things work.) 

Initialization and Shutdown

As already mentioned, init_module registers any facility offered by the module. By facility, we mean a new functionality, be it a whole driver or a new software abstraction, that can be accessed by an application. 

Modules can register many different types of facilities; for each facility, there is a specific kernel function that accomplishes this registration. The arguments passed to the kernel registration functions are usually a pointer to a data structure describing the new facility and the name of the facility being registered. The data structure usually embeds pointers to module functions, which is how functions in the module body get called. 

The items that can be registered exceed the list of device types mentioned in Chapter 1, "An Introduction to Device Drivers". They include serial ports, miscellaneous devices, /proc files, executable domains, and line disciplines. Many of those registrable items support functions that aren't directly related to hardware but remain in the "software abstractions" field. Those items can be registered because they are integrated into the driver's functionality anyway (like /proc files and line disciplines for example). 

There are other facilities that can be registered as add-ons for certain drivers, but their use is so specific that it's not worth talking about them; they use the stacking technique, as described earlier in "The Kernel Symbol Table"." If you want to probe further, you can grep for EXPORT_SYMBOL in the kernel sources and find the entry points offered by different drivers. Most registration functions are prefixed with register_, so another possible way to find them is to grep for register_ in /proc/ksyms. 

Error Handling in init_module

If any errors occur when you register utilities, you must undo any registration activities performed before the failure. An error can happen, for example, if there isn't enough memory in the system to allocate a new data structure or because a resource being requested is already being used by other drivers. Though unlikely, it might happen, and good program code must be prepared to handle this event. 

Linux doesn't keep a per-module registry of facilities that have been registered, so the module must back out of everything itself if init_module fails at some point. If you ever fail to unregister what you obtained, the kernel is left in an unstable state: you can't register your facilities again by reloading the module because they will appear to be busy, and you can't unregister them because you'd need the same pointer you used to register and you're not likely to be able to figure out the address. Recovery from such situations is tricky, and you'll be often forced to reboot in order to be able to load a newer revision of your module. 

Error recovery is sometimes best handled with the goto statement. We normally hate to use goto, but in our opinion this is one situation (well, the only situation) where it is useful. In the kernel, goto is often used as shown here to deal with errors. 

The following sample code (using fictitious registration and unregistration functions) behaves correctly if initialization fails at any point. 

 int init_module(void)

 {

 int err;

  /* registration takes a pointer and a name */

  err = register_this(ptr1, "skull");

  if (err) goto fail_this;

  err = register_that(ptr2, "skull");

  if (err) goto fail_that;

  err = register_those(ptr3, "skull");

  if (err) goto fail_those;

  return 0; /* success */

  fail_those: unregister_that(ptr2, "skull");

  fail_that: unregister_this(ptr1, "skull");

  fail_this: return err; /* propagate the error */

 }

This code attempts to register three (fictitious) facilities. The goto statement is used in case of failure to cause the unregistration of only the facilities that had been successfully registered before things went bad. 

Another option, requiring no hairy goto statements, is keeping track of what has been successfully registered and calling cleanup_module in case of any error. The cleanup function will only unroll the steps that have been successfully accomplished. This alternative, however, requires more code and more CPU time, so in fast paths you'll still resort to goto as the best error-recovery tool. The return value of init_module, err, is an error code. In the Linux kernel, error codes are negative numbers belonging to the set defined in <linux/errno.h>. If you want to generate your own error codes instead of returning what you get from other functions, you should include <linux/errno.h> in order to use symbolic values such as -ENODEV, -ENOMEM, and so on. It is always good practice to return appropriate error codes, because user programs can turn them to meaningful strings using perror or similar means. (However, it's interesting to note that several versions of modutils returned a "Device busy" message for any error returned by init_module; the problem has only been fixed in recent releases.) 

Obviously, cleanup_module must undo any registration performed by init_module, and it is customary (but not mandatory) to unregister facilities in the reverse order used to register them: 

 void cleanup_module(void)

 {

  unregister_those(ptr3, "skull");

  unregister_that(ptr2, "skull");

  unregister_this(ptr1, "skull");

  return;

 }

If your initialization and cleanup are more complex than dealing with a few items, the goto approach may become difficult to manage, because all the cleanup code must be repeated within init_module, with several labels intermixed. Sometimes, therefore, a different layout of the code proves more successful. 

What you'd do to minimize code duplication and keep everything streamlined is to call cleanup_module from within init_module whenever an error occurs. The cleanup function, then, must check the status of each item before undoing its registration. In its simplest form, the code looks like the following: 

 struct something *item1;

 struct somethingelse *item2;

 int stuff_ok;

 void cleanup_module(void)

 {

  if (item1)


 release_thing(item1);

  if (item2)

   release_thing2(item2);

  if (stuff_ok)

   unregister_stuff();

  return;

 }

 int init_module(void)

 {

  int err = -ENOMEM;

  item1 = allocate_thing(arguments);

  item2 = allocate_thing2(arguments2);

  if (!item2 || !item2)

   goto fail;

  err = register_stuff(item1, item2);

  if (!err)

   stuff_ok = 1;

  else

   goto fail;

  return 0; /* success */ 

  fail:

  cleanup_module();

  return err;

 }

As shown in this code, you may or may not need external flags to mark success of the initialization step, depending on the semantics of the registration/allocation function you call. Whether or not flags are needed, this kind of initialization scales well to a large number of items and is often better than the technique shown earlier. 

The Usage Count

The system keeps a usage count for every module in order to determine whether the module can be safely removed. The system needs this information because a module can't be unloaded if it is busy: you can't remove a filesystem type while the filesystem is mounted, and you can't drop a char device while a process is using it, or you'll experience some sort of segmentation fault or kernel panic when wild pointers get dereferenced. 

In modern kernels, the system can automatically track the usage count for you, using a mechanism that we will see in the next chapter. There are still times, however, when you will need to adjust the usage count manually. Code that must be portable to older kernels must still use manual usage count maintenance as well. To work with the usage count, use these three macros: 

MOD_INC_USE_COUNT 

Increments the count for the current module 

MOD_DEC_USE_COUNT 

Decrements the count 

MOD_IN_USE 

Evaluates to true if the count is not zero 

The macros are defined in <linux/module.h>, and they act on internal data structures that shouldn't be accessed directly by the programmer. The internals of module management changed a lot during 2.1 development and were completely rewritten in 2.1.18, but the use of these macros did not change. 

Note that there's no need to check for MOD_IN_USE from within cleanup_module, because the check is performed by the system call sys_delete_module(defined in kernel/module.c) in advance. 

Proper management of the module usage count is critical for system stability. Remember that the kernel can decide to try to unload your module at absolutely any time. A common module programming error is to start a series of operations (in response, say, to an open request) and increment the usage count at the end. If the kernel unloads the module halfway through those operations, chaos is ensured. To avoid this kind of problem, you should call MOD_INC_USE_COUNT before doing almost anything else in a module. 

You won't be able to unload a module if you lose track of the usage count. This situation may very well happen during development, so you should keep it in mind. For example, if a process gets destroyed because your driver dereferenced a NULL pointer, the driver won't be able to close the device, and the usage count won't fall back to zero. One possible solution is to completely disable the usage count during the debugging cycle by redefining both MOD_INC_USE_COUNT and MOD_DEC_USE_COUNT to no-ops. Another solution is to use some other method to force the counter to zero (you'll see this done in the section "Using the ioctl Argument" in Chapter 5, "Enhanced Char Driver Operations"). Sanity checks should never be circumvented in a production module. For debugging, however, sometimes a brute-force attitude helps save development time and is therefore acceptable. 

The current value of the usage count is found in the third field of each entry in /proc/modules. This file shows the modules currently loaded in the system, with one entry for each module. The fields are the name of the module, the number of bytes of memory it uses, and the current usage count. This is a typical /proc/modules file: 

parport_pc    7604 1 (autoclean)

lp      4800 0 (unused)

parport     8084 1 [parport_probe parport_pc lp]

lockd     33256 1 (autoclean)

sunrpc     56612 1 (autoclean) [lockd]

ds      6252 1 

i82365     22304 1 

pcmcia_core   41280 0 [ds i82365]

Here we see several modules in the system. Among other things, the parallel port modules have been loaded in a stacked manner, as we saw in Figure 2-2. The (autoclean) marker identifies modules managed by kmodor kerneld (see Chapter 11, "kmod and Advanced Modularization"); the (unused) marker means exactly that. Other flags exist as well. In Linux 2.0, the second (size) field was expressed in pages (4 KB each on most platforms) rather than bytes. 

Unloading

To unload a module, use the rmmodcommand. Its task is much simpler than loading, since no linking has to be performed. The command invokes the delete_module system call, which calls cleanup_module in the module itself if the usage count is zero or returns an error otherwise. 

The cleanup_module implementation is in charge of unregistering every item that was registered by the module. Only the exported symbols are removed automatically. 

Explicit Initialization and Cleanup Functions

As we have seen, the kernel calls init_module to initialize a newly loaded module, and calls cleanup_module just before module removal. In modern kernels, however, these functions often have different names. As of kernel 2.3.13, a facility exists for explicitly naming the module initialization and cleanup routines; using this facility is the preferred programming style. 

Consider an example. If your module names its initialization routine my_init (instead of init_module) and its cleanup routine my_cleanup, you would mark them with the following two lines (usually at the end of the source file): 

 module_init(my_init);

 module_exit(my_cleanup);

Note that your code must include <linux/init.h> to use module_init and module_exit. 

The advantage of doing things this way is that each initialization and cleanup function in the kernel can have a unique name, which helps with debugging. These functions also make life easier for those writing drivers that work either as a module or built directly into the kernel. However, use of module_init and module_exit is not required if your initialization and cleanup functions use the old names. In fact, for modules, the only thing they do is define init_module and cleanup_module as new names for the given functions. 

If you dig through the kernel source (in versions 2.2 and later), you will likely see a slightly different form of declaration for module initialization and cleanup functions, which looks like the following: 

 static int __init my_init(void)

 {

  ....

 }

 static void __exit my_cleanup(void)

 {

  ....

 }

The attribute __init, when used in this way, will cause the initialization function to be discarded, and its memory reclaimed, after initialization is complete. It only works, however, for built-in drivers; it has no effect on modules. __exit, instead, causes the omission of the marked function when the driver is not built as a module; again, in modules, it has no effect. 

The use of __init (and __initdata for data items) can reduce the amount of memory used by the kernel. There is no harm in marking module initialization functions with __init, even though currently there is no benefit either. Management of initialization sections has not been implemented yet for modules, but it's a possible enhancement for the future. 

Using Resources

A module can't accomplish its task without using system resources such as memory, I/O ports, I/O memory, and interrupt lines, as well as DMA channels if you use old-fashioned DMA controllers like the Industry Standard Architecture (ISA) one. 

As a programmer, you are already accustomed to managing memory allocation; writing kernel code is no different in this regard. Your program obtains a memory area using kmalloc and releases it using kfree. These functions behave like malloc and free, except that kmalloc takes an additional argument, the priority. Usually, a priority of GFP_KERNEL or GFP_USER will do. The GFP acronym stands for "get free page." (Memory allocation is covered in detail in Chapter 7, "Getting Hold of Memory".) 

Beginning driver programmers may initially be surprised at the need to allocate I/O ports, I/O memory,[11] and interrupt lines explicitly. After all, it is possible for a kernel module to simply access these resources without telling the operating system about it. Although system memory is anonymous and may be allocated from anywhere, I/O memory, ports, and interrupts have very specific roles. For instance, a driver needs to be able to allocate the exact ports it needs, not just some ports. But drivers cannot just go about making use of these system resources without first ensuring that they are not already in use elsewhere. 

[11]The memory areas that reside on the peripheral device are commonly called I/O memory to differentiate them from system RAM, which is customarily called memory).

I/O Ports and I/O Memory

The job of a typical driver is, for the most part, writing and reading I/O ports and I/O memory. Access to I/O ports and I/O memory (collectively called I/O regions) happens both at initialization time and during normal operations. 

Unfortunately, not all bus architectures offer a clean way to identify I/O regions belonging to each device, and sometimes the driver must guess where its I/O regions live, or even probe for the devices by reading and writing to "possible" address ranges. This problem is especially true of the ISA bus, which is still in use for simple devices to plug in a personal computer and is very popular in the industrial world in its PC/104 implementation (see "PC/104 and PC/104+" in Chapter 15, "Overview of Peripheral Buses"). 

Despite the features (or lack of features) of the bus being used by a hardware device, the device driver should be guaranteed exclusive access to its I/O regions in order to prevent interference from other drivers. For example, if a module probing for its hardware should happen to write to ports owned by another device, weird things would undoubtedly happen. 

The developers of Linux chose to implement a request/free mechanism for I/O regions, mainly as a way to prevent collisions between different devices. The mechanism has long been in use for I/O ports and was recently generalized to manage resource allocation at large. Note that this mechanism is just a software abstraction that helps system housekeeping, and may or may not be enforced by hardware features. For example, unauthorized access to I/O ports doesn't produce any error condition equivalent to "segmentation fault" -- the hardware can't enforce port registration. 

Information about registered resources is available in text form in the files /proc/ioports and /proc/iomem, although the latter was only introduced during 2.3 development. We'll discuss version 2.4 now, introducing portability issues at the end of the chapter. 

Ports

A typical /proc/ioports file on a recent PC that is running version 2.4 of the kernel will look like the following: 

 0000-001f : dma1

 0020-003f : pic1

 0040-005f : timer

 0060-006f : keyboard

 0080-008f : dma page reg

 00a0-00bf : pic2

 00c0-00df : dma2

 00f0-00ff : fpu

 0170-0177 : ide1

 01f0-01f7 : ide0

 02f8-02ff : serial(set)

 0300-031f : NE2000

 0376-0376 : ide1

 03c0-03df : vga+

 03f6-03f6 : ide0

 03f8-03ff : serial(set)

 1000-103f : Intel Corporation 82371AB PIIX4 ACPI

  1000-1003 : acpi

  1004-1005 : acpi

  1008-100b : acpi

  100c-100f : acpi

 1100-110f : Intel Corporation 82371AB PIIX4 IDE

 1300-131f : pcnet_cs

 1400-141f : Intel Corporation 82371AB PIIX4 ACPI

 1800-18ff : PCI CardBus #02

 1c00-1cff : PCI CardBus #04

 5800-581f : Intel Corporation 82371AB PIIX4 USB

 d000-dfff : PCI Bus #01

  d000-d0ff : ATI Technologies Inc 3D Rage LT Pro AGP-133

Each entry in the file specifies (in hexadecimal) a range of ports locked by a driver or owned by a hardware device. In earlier versions of the kernel the file had the same format, but without the "layered" structure that is shown through indentation. 

The file can be used to avoid port collisions when a new device is added to the system and an I/O range must be selected by moving jumpers: the user can check what ports are already in use and set up the new device to use an available I/O range. Although you might object that most modern hardware doesn't use jumpers any more, the issue is still relevant for custom devices and industrial components. 

But what is more important than the ioports file itself is the data structure behind it. When the software driver for a device initializes itself, it can know what port ranges are already in use; if the driver needs to probe I/O ports to detect the new device, it will be able to avoid probing those ports that are already in use by other drivers. 

ISA probing is in fact a risky task, and several drivers distributed with the official Linux kernel refuse to perform probing when loaded as modules, to avoid the risk of destroying a running system by poking around in ports where some yet-unknown hardware may live. Fortunately, modern (as well as old-but-well-thought-out) bus architectures are immune to all these problems. 

The programming interface used to access the I/O registry is made up of three functions: 

 int check_region(unsigned long start, unsigned long len);

 struct resource *request_region(unsigned long start,

 unsigned long len, char *name);

 void release_region(unsigned long start, unsigned long len);

check_region may be called to see if a range of ports is available for allocation; it returns a negative error code (such as -EBUSY or -EINVAL) if the answer is no. request_region will actually allocate the port range, returning a non-NULL pointer value if the allocation succeeds. Drivers don't need to use or save the actual pointer returned -- checking against NULL is all you need to do.[12] Code that needs to work only with 2.4 kernels need not call check_region at all; in fact, it's better not to, since things can change between the calls to check_region and request_region. If you want to be portable to older kernels, however, you must use check_regionbecause request_region used to return void before 2.4. Your driver should call release_region, of course, to release the ports when it is done with them. 

[12]The actual pointer is used only when the function is called internally by the resource management subsystem of the kernel.

The three functions are actually macros, and they are declared in <linux/ioport.h>. 

The typical sequence for registering ports is the following, as it appears in the skull sample driver. (The function skull_probe_hw is not shown here because it contains device-specific code.) 

#include <linux/ioport.h>

#include <linux/errno.h>

static int skull_detect(unsigned int port, unsigned int range)

{

 int err;

 if ((err = check_region(port,range)) < 0) return err; /* busy */

 if (skull_probe_hw(port,range) != 0) return -ENODEV; /* not found */

 request_region(port,range,"skull");     /* "Can't fail" */

 return 0;

}

This code first looks to see if the required range of ports is available; if the ports cannot be allocated, there is no point in looking for the hardware. The actual allocation of the ports is deferred until after the device is known to exist. The request_region call should never fail; the kernel only loads a single module at a time, so there should not be a problem with other modules slipping in and stealing the ports during the detection phase. Paranoid code can check, but bear in mind that kernels prior to 2.4 define request_region as returning void.

Any I/O ports allocated by the driver must eventually be released; skull does it from within cleanup_module: 

static void skull_release(unsigned int port, unsigned int range)

{

 release_region(port,range);

}

The request/free approach to resources is similar to the register/unregister sequence described earlier for facilities and fits well in the goto-based implementation scheme already outlined. 

Memory

Similar to what happens for I/O ports, I/O memory information is available in the /proc/iomem file. This is a fraction of the file as it appears on a personal computer: 

 00000000-0009fbff : System RAM

 0009fc00-0009ffff : reserved

 000a0000-000bffff : Video RAM area

 000c0000-000c7fff : Video ROM

 000f0000-000fffff : System ROM

 00100000-03feffff : System RAM

  00100000-0022c557 : Kernel code

  0022c558-0024455f : Kernel data

 20000000-2fffffff : Intel Corporation 440BX/ZX - 82443BX/ZX Host bridge

 68000000-68000fff : Texas Instruments PCI1225

 68001000-68001fff : Texas Instruments PCI1225 (#2)

 e0000000-e3ffffff : PCI Bus #01

 e4000000-e7ffffff : PCI Bus #01

  e4000000-e4ffffff : ATI Technologies Inc 3D Rage LT Pro AGP-133

  e6000000-e6000fff : ATI Technologies Inc 3D Rage LT Pro AGP-133

 fffc0000-ffffffff : reserved

Once again, the values shown are hexadecimal ranges, and the string after the colon is the name of the "owner" of the I/O region. 

As far as driver writing is concerned, the registry for I/O memory is accessed in the same way as for I/O ports, since they are actually based on the same internal mechanism. 

To obtain and relinquish access to a certain I/O memory region, the driver should use the following calls: 

 int check_mem_region(unsigned long start, unsigned long len);

 int request_mem_region(unsigned long start, unsigned long len,

    char *name);

 int release_mem_region(unsigned long start, unsigned long len);

A typical driver will already know its own I/O memory range, and the sequence shown previously for I/O ports will reduce to the following: 

 if (check_mem_region(mem_addr, mem_size)) { printk("drivername:

  memory already in use\n"); return -EBUSY; }

  request_mem_region(mem_addr, mem_size, "drivername");

Resource Allocation in Linux 2.4

The current resource allocation mechanism was introduced in Linux 2.3.11 and provides a flexible way of controlling system resources. This section briefly describes the mechanism. However, the basic resource allocation functions (request_region and the rest) are still implemented (via macros) and are still universally used because they are backward compatible with earlier kernel versions. Most module programmers will not need to know about what is really happening under the hood, but those working on more complex drivers may be interested. 

Linux resource management is able to control arbitrary resources, and it can do so in a hierarchical manner. Globally known resources (the range of I/O ports, say) can be subdivided into smaller subsets -- for example, the resources associated with a particular bus slot. Individual drivers can then further subdivide their range if need be. 

Resource ranges are described via a resourcestructure, declared in <linux/ioport.h>: 

 struct resource {

  const char *name;

  unsigned long start, end;

  unsigned long flags;

  struct resource *parent, *sibling, *child;

 };

Top-level (root) resources are created at boot time. For example, the resource structure describing the I/O port range is created as follows: 

 struct resource ioport_resource = 

    { "PCI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };

Thus, the name of the resource is PCI IO, and it covers a range from zero through IO_SPACE_LIMIT, which, according to the hardware platform being run, can be 0xffff (16 bits of address space, as happens on the x86, IA-64, Alpha, M68k, and MIPS), 0xffffffff (32 bits: SPARC, PPC, SH) or 0xffffffffffffffff (64 bits: SPARC64). 

Subranges of a given resource may be created with allocate_resource. For example, during PCI initialization a new resource is created for a region that is actually assigned to a physical device. When the PCI code reads those port or memory assignments, it creates a new resource for just those regions, and allocates them under ioport_resource or iomem_resource. 

A driver can then request a subset of a particular resource (actually a subrange of a global resource) and mark it as busy by calling __request_region, which returns a pointer to a new struct resource data structure that describes the resource being requested (or returns NULL in case of error). The structure is already part of the global resource tree, and the driver is not allowed to use it at will. 

An interested reader may enjoy looking at the details by browsing the source in kernel/resource.c and looking at the use of the resource management scheme in the rest of the kernel. Most driver writers, however, will be more than adequately served by request_region and the other functions introduced in the previous section. 

This layered mechanism brings a couple of benefits. One is that it makes the I/O structure of the system apparent within the data structures of the kernel. The result shows up in /proc/ioports, for example: 

 e800-e8ff : Adaptec AHA-2940U2/W / 7890

 e800-e8be : aic7xxx

The range e800-e8ff is allocated to an Adaptec card, which has identified itself to the PCI bus driver. The aic7xxx driver has then requested most of that range -- in this case, the part corresponding to real ports on the card. 

The other advantage to controlling resources in this way is that it partitions the port space into distinct subranges that reflect the hardware of the underlying system. Since the resource allocator will not allow an allocation to cross subranges, it can block a buggy driver (or one looking for hardware that does not exist on the system) from allocating ports that belong to more than range -- even if some of those ports are unallocated at the time. 

Automatic and Manual Configuration

Several parameters that a driver needs to know can change from system to system. For instance, the driver must know the hardware's actual I/O addresses, or memory range (this is not a problem with well-designed bus interfaces and only applies to ISA devices). Sometimes you'll need to pass parameters to a driver to help it in finding its own device or to enable/disable specific features. 

Depending on the device, there may be other parameters in addition to the I/O address that affect the driver's behavior, such as device brand and release number. It's essential for the driver to know the value of these parameters in order to work correctly. Setting up the driver with the correct values (i.e., configuring it) is one of the tricky tasks that need to be performed during driver initialization. 

Basically, there are two ways to obtain the correct values: either the user specifies them explicitly or the driver autodetects them. Although autodetection is undoubtedly the best approach to driver configuration, user configuration is much easier to implement. A suitable trade-off for a driver writer is to implement automatic configuration whenever possible, while allowing user configuration as an option to override autodetection. An additional advantage of this approach to configuration is that the initial development can be done without autodetection, by specifying the parameters at load time, and autodetection can be implemented later. 

Many drivers also have configuration options that control other aspects of their operation. For example, drivers for SCSI adapters often have options controlling the use of tagged command queuing, and the Integrated Device Electronics (IDE) drivers allow user control of DMA operations. Thus, even if your driver relies entirely on autodetection to locate hardware, you may want to make other configuration options available to the user. 

Parameter values can be assigned at load time by insmod or modprobe; the latter can also read parameter assignment from a configuration file (typically /etc/modules.conf). The commands accept the specification of integer and string values on the command line. Thus, if your module were to provide an integer parameter called skull_ival and a string parameter skull_sval, the parameters could be set at module load time with an insmod command like: 

 insmod skull skull_ival=666 skull_sval="the beast"

However, before insmod can change module parameters, the module must make them available. Parameters are declared with the MODULE_PARM macro, which is defined in module.h. MODULE_PARM takes two parameters: the name of the variable, and a string describing its type. The macro should be placed outside of any function and is typically found near the head of the source file. The two parameters mentioned earlier could be declared with the following lines: 

 int skull_ival=0;

 char *skull_sval;

 MODULE_PARM (skull_ival, "i");

 MODULE_PARM (skull_sval, "s");

Five types are currently supported for module parameters: b, one byte; h, a short (two bytes); i, an integer; l, a long; and s, a string. In the case of string values, a pointer variable should be declared; insmod will allocate the memory for the user-supplied parameter and set the variable accordingly. An integer value preceding the type indicates an array of a given length; two numbers, separated by a hyphen, give a minimum and maximum number of values. If you want to find the author's description of this feature, you should refer to the header file <linux/module.h>. 

As an example, an array that must have at least two and no more than four values could be declared as: 

 int skull_array[4];

 MODULE_PARM (skull_array, "2-4i");

There is also a macro MODULE_PARM_DESC, which allows the programmer to provide a description for a module parameter. This description is stored in the object file; it can be viewed with a tool like objdump, and can also be displayed by automated system administration tools. An example might be as follows: 

 int base_port = 0x300;

 MODULE_PARM (base_port, "i");

 MODULE_PARM_DESC (base_port, "The base I/O port (default 0x300)");

All module parameters should be given a default value; insmod will change the value only if explicitly told to by the user. The module can check for explicit parameters by testing parameters against their default values. Automatic configuration, then, can be designed to work this way: if the configuration variables have the default value, perform autodetection; otherwise, keep the current value. In order for this technique to work, the "default" value should be one that the user would never actually want to specify at load time. 

The following code shows how skullautodetects the port address of a device. In this example, autodetection is used to look for multiple devices, while manual configuration is restricted to a single device. The function skull_detect occurred earlier, in "Ports"," while skull_init_board is in charge of device-specific initialization and thus is not shown. 

/*

 * port ranges: the device can reside between

 * 0x280 and 0x300, in steps of 0x10. It uses 0x10 ports.

 */

#define SKULL_PORT_FLOOR 0x280

#define SKULL_PORT_CEIL 0x300

#define SKULL_PORT_RANGE 0x010

/*

 * the following function performs autodetection, unless a specific

 * value was assigned by insmod to "skull_port_base"

 */

static int skull_port_base=0; /* 0 forces autodetection */

MODULE_PARM (skull_port_base, "i");

MODULE_PARM_DESC (skull_port_base, "Base I/O port for skull");

static int skull_find_hw(void) /* returns the # of devices */

{

 /* base is either the load-time value or the first trial */

 int base = skull_port_base ? skull_port_base 

        : SKULL_PORT_FLOOR; 

 int result = 0;

 /* loop one time if value assigned; try them all if autodetecting */

 do {


if (skull_detect(base, SKULL_PORT_RANGE) == 0) {


 skull_init_board(base);


 result++;


}


base += SKULL_PORT_RANGE; /* prepare for next trial */

 }

 while (skull_port_base == 0 && base < SKULL_PORT_CEIL);

 return result;

}

If the configuration variables are used only within the driver (they are not published in the kernel's symbol table), the driver writer can make life a little easier for the user by leaving off the prefix on the variable names (in this case, skull_). Prefixes usually mean little to users except extra typing. 

For completeness, there are three other macros that place documentation into the object file. They are as follows: 

MODULE_AUTHOR (name) 

Puts the author's name into the object file. 

MODULE_DESCRIPTION (desc) 

Puts a description of the module into the object file. 

MODULE_SUPPORTED_DEVICE (dev) 

Places an entry describing what device is supported by this module. Comments in the kernel source suggest that this parameter may eventually be used to help with automated module loading, but no such use is made at this time. 

Doing It in User Space

A Unix programmer who's addressing kernel issues for the first time might well be nervous about writing a module. Writing a user program that reads and writes directly to the device ports is much easier. 

Indeed, there are some arguments in favor of user-space programming, and sometimes writing a so-called user-space device driver is a wise alternative to kernel hacking. 

The advantages of user-space drivers can be summarized as follows: 

· The full C library can be linked in. The driver can perform many exotic tasks without resorting to external programs (the utility programs implementing usage policies that are usually distributed along with the driver itself). 

· The programmer can run a conventional debugger on the driver code without having to go through contortions to debug a running kernel. 

· If a user-space driver hangs, you can simply kill it. Problems with the driver are unlikely to hang the entire system, unless the hardware being controlled is really misbehaving. 

· User memory is swappable, unlike kernel memory. An infrequently used device with a huge driver won't occupy RAM that other programs could be using, except when it is actually in use. 

· A well-designed driver program can still allow concurrent access to a device. 

An example of a user-space driver is the X server: it knows exactly what the hardware can do and what it can't, and it offers the graphic resources to all X clients. Note, however, that there is a slow but steady drift toward frame-buffer-based graphics environments, where the X server acts only as a server based on a real kernel-space device driver for actual graphic manipulation. 

Usually, the writer of a user-space driver implements a server process, taking over from the kernel the task of being the single agent in charge of hardware control. Client applications can then connect to the server to perform actual communication with the device; a smart driver process can thus allow concurrent access to the device. This is exactly how the X server works. 

Another example of a user-space driver is the gpm mouse server: it performs arbitration of the mouse device between clients, so that several mouse-sensitive applications can run on different virtual consoles. 

Sometimes, though, the user-space driver grants device access to a single program. This is how libsvga works. The library, which turns a TTY into a graphics display, gets linked to the application, thus supplementing the application's capabilities without resorting to a central authority (e.g., a server). This approach usually gives you better performance because it skips the communication overhead, but it requires the application to run as a privileged user (this is one of the problems being solved by the frame buffer device driver running in kernel space). 

But the user-space approach to device driving has a number of drawbacks. The most important are as follows: 

· Interrupts are not available in user space. The only way around this (on the x86) is to use the vm86 system call, which imposes a performance penalty.[13] 

[13]The system call is not discussed in this book because the subject matter of the text is kernel drivers; moreover, vm86 is too platform specific to be really interesting.

· Direct access to memory is possible only by mmapping /dev/mem, and only a privileged user can do that. 

· Access to I/O ports is available only after calling ioperm or iopl. Moreover, not all platforms support these system calls, and access to /dev/port can be too slow to be effective. Both the system calls and the device file are reserved to a privileged user. 

· Response time is slower, because a context switch is required to transfer information or actions between the client and the hardware. 

· Worse yet, if the driver has been swapped to disk, response time is unacceptably long. Using the mlock system call might help, but usually you'll need to lock several memory pages, because a user-space program depends on a lot of library code. mlock, too, is limited to privileged users. 

· The most important devices can't be handled in user space, including, but not limited to, network interfaces and block devices. 

As you see, user-space drivers can't do that much after all. Interesting applications nonetheless exist: for example, support for SCSI scanner devices (implemented by the SANE package) and CD writers (implemented by cdrecord and other tools). In both cases, user-level device drivers rely on the "SCSI generic" kernel driver, which exports low-level SCSI functionality to user-space programs so they can drive their own hardware. 

In order to write a user-space driver, some hardware knowledge is sufficient, and there's no need to understand the subtleties of kernel software. We won't discuss user-space drivers any further in this book, but will concentrate on kernel code instead. 

One case in which working in user space might make sense is when you are beginning to deal with new and unusual hardware. This way you can learn to manage your hardware without the risk of hanging the whole system. Once you've done that, encapsulating the software in a kernel module should be a painless operation. 

Backward Compatibility

The Linux kernel is a moving target -- many things change over time as new features are developed. The interface that we have described in this chapter is that provided by the 2.4 kernel; if your code needs to work on older releases, you will need to take various steps to make that happen. 

This is the first of many "backward compatibility" sections in this book. At the end of each chapter we'll cover the things that have changed since version 2.0 of the kernel, and what needs to be done to make your code portable. 

For starters, the KERNEL_VERSION macro was introduced in kernel 2.1.90. The sysdep.h header file contains a replacement for kernels that need it. 

Changes in Resource Management

The new resource management scheme brings in a few portability problems if you want to write a driver that can run with kernel versions older than 2.4. This section discusses the portability problems you'll encounter and how the sysdep.hheader tries to hide them. 

The most apparent change brought about by the new resource management code is the addition of request_mem_region and related functions. Their role is limited to accessing the I/O memory database, without performing specific operations on any hardware. What you can do with earlier kernels, thus, is to simply not call the functions. The sysdep.h header easily accomplishes that by defining the functions as macros that return 0 for kernels earlier than 2.4. 

Another difference between 2.4 and earlier kernel versions is in the actual prototypes of request_region and related functions. 

Kernels earlier than 2.4 declared both request_region and release_region as functions returning void (thus forcing the use of check_region beforehand). The new implementation, more correctly, has functions that return a pointer value so that an error condition can be signaled (thus making check_region pretty useless). The actual pointer value will not generally be useful to driver code for anything other than a test for NULL, which means that the request failed. 

If you want to save a few lines of code in your drivers and are not concerned about backward portability, you could exploit the new function calls and avoid using check_region in your code. Actually, check_region is now implemented on top of request_region, releasing the I/O region and returning success if the request is fulfilled; the overhead is negligible because none of these functions is ever called from a time-critical code section. 

If you prefer to be portable, you can stick to the call sequence we suggested earlier in this chapter and ignore the return values of request_region and release_region. Anyway, sysdep.h declares both functions as macros returning 0 (success), so you can both be portable and check the return value of every function you call. 

The last difference in the I/O registry between version 2.4 and earlier versions of the kernel is in the data types used for the start and len arguments. Whereas new kernels always use unsigned long, older kernels used shorter types. This change has no effect on driver portability, though. 

Compiling for Multiprocessor Systems

Version 2.0 of the kernel didn't use the CONFIG_SMP configuration option to build for SMP systems; instead, choice was made a global assignment in the main kernel makefile. Note that modules compiled for an SMP machine will not work in a uniprocessor kernel, and vice versa, so it is important to get this one right. 

The sample code accompanying this book automatically deals with SMP in the makefiles, so the code shown earlier need not be copied in each module. However, we do not support SMP under version 2.0 of the kernel. This should not be a problem because multiprocessor support was not very robust in Linux 2.0, and everyone running SMP systems should be using 2.2 or 2.4. Version 2.0 is covered by this book because it's still the platform of choice for small embedded systems (especially in its no-MMU implementation), but no such system has multiple processors. 

Exporting Symbols in Linux 2.0

The Linux 2.0 symbol export mechanism was built around a function called register_symtab. A Linux 2.0 module would build a table describing all of the symbols to be exported, then would call register_symtab from its initialization function. Only symbols that were listed in the explicit symbol table were exported to the kernel. If, instead, the function was not called at all, all global symbols were exported. 

If your module doesn't need to export any symbols, and you don't want to declare everything as static, just hide global symbols by adding the following line to init_module. This call to register_symtab simply overwrites the module's default symbol table with an empty one: 

 register_symtab(NULL);

This is exactly how sysdep.h defines EXPORT_NO_SYMBOLS when compiling for version 2.0. This is also why EXPORT_NO_SYMBOLS must appear within init_module to work properly under Linux 2.0. 

If you do need to export symbols from your module, you will need to create a symbol table structure describing these symbols. Filling a Linux 2.0 symbol table structure is a tricky task, but kernel developers have provided header files to simplify things. The following lines of code show how a symbol table is declared and exported using the facilities offered by the headers of Linux 2.0: 

static struct symbol_table skull_syms = {

#include <linux/symtab_begin.h>

  X(skull_fn1),

  X(skull_fn2),

  X(skull_variable),

#include <linux/symtab_end.h>


};

 register_symtab(&skull_syms);

Writing portable code that controls symbol visibility takes an explicit effort from the device driver programmer. This is a case where it is not sufficient to define a few compatibility macros; instead, portability requires a fair amount of conditional preprocessor code, but the concepts are simple. The first step is to identify the kernel version in use and to define some symbols accordingly. What we chose to do in sysdep.h is define a macro REGISTER_SYMTAB() that expands to nothing on version 2.2 and later and expands to register_symtab on version 2.0. Also, __USE_OLD_SYMTAB__ is defined if the old code must be used. 

By making use of this code, a module that exports symbols may now do so portably. In the sample code is a module, called misc-modules/export.c, that does nothing except export one symbol. The module, covered in more detail in "Version Control in Modules" in Chapter 11, "kmod and Advanced Modularization", includes the following lines to export the symbol portably: 

#ifdef __USE_OLD_SYMTAB__

 static struct symbol_table export_syms = {

  #include <linux/symtab_begin.h>

  X(export_function),

  #include <linux/symtab_end.h>

 };

#else

 EXPORT_SYMBOL(export_function);

#endif

int export_init(void)

{

 REGISTER_SYMTAB(&export_syms);

 return 0;

}

If __USE_OLD_SYMTAB__ is set (meaning that you are dealing with a 2.0 kernel), the symbol_table structure is defined as needed; otherwise, EXPORT_SYMBOL is used to export the symbol directly. Then, in init_module, REGISTER_SYMTAB is called; on anything but a 2.0 kernel, it will expand to nothing. 

Module Configuration Parameters

MODULE_PARM was introduced in kernel version 2.1.18. With the 2.0 kernel, no parameters were declared explicitly; instead, insmod was able to change the value of any variable within the module. This method had the disadvantage of providing user access to variables for which this mode of access had not been intended; there was also no type checking of parameters. MODULE_PARM makes module parameters much cleaner and safer, but also makes Linux 2.2 modules incompatible with 2.0 kernels. 

If 2.0 compatibility is a concern, a simple preprocessor test can be used to define the various MODULE_ macros to do nothing. The header file sysdep.h in the sample code defines these macros when needed. 

Quick Reference

This section summarizes the kernel functions, variables, macros, and /proc files that we've touched on in this chapter. It is meant to act as a reference. Each item is listed after the relevant header file, if any. A similar section appears at the end of every chapter from here on, summarizing the new symbols introduced in the chapter. 

__KERNEL__ 

MODULE 

Preprocessor symbols, which must both be defined to compile modularized kernel code. 

__SMP__ 

A preprocessor symbol that must be defined when compiling modules for symmetric multiprocessor systems. 

int init_module(void); 

void cleanup_module(void); 

Module entry points, which must be defined in the module object file. 

#include <linux/init.h> 

module_init(init_function); 

module_exit(cleanup_function); 

The modern mechanism for marking a module's initialization and cleanup functions. 

#include <linux/module.h> 

Required header. It must be included by a module source. 

MOD_INC_USE_COUNT; 

MOD_DEC_USE_COUNT; 

MOD_IN_USE; 

Macros that act on the usage count. 

/proc/modules 

The list of currently loaded modules. Entries contain the module name, the amount of memory each module occupies, and the usage count. Extra strings are appended to each line to specify flags that are currently active for the module. 

EXPORT_SYMTAB; 

Preprocessor macro, required for modules that export symbols. 

EXPORT_NO_SYMBOLS; 

Macro used to specify that the module exports no symbols to the kernel. 

EXPORT_SYMBOL (symbol); 

EXPORT_SYMBOL_NOVERS (symbol); 

Macro used to export a symbol to the kernel. The second form exports without using versioning information. 

int register_symtab(struct symbol_table *); 

Function used to specify the set of public symbols in the module. Used in 2.0 kernels only. 

#include <linux/symtab_begin.h> 

X(symbol), 

#include <linux/symtab_end.h> 

Headers and preprocessor macro used to declare a symbol table in the 2.0 kernel. 

MODULE_PARM(variable, type); 

MODULE_PARM_DESC (variable, description); 

Macros that make a module variable available as a parameter that may be adjusted by the user at module load time. 

MODULE_AUTHOR(author); 

MODULE_DESCRIPTION(description); 

MODULE_SUPPORTED_DEVICE(device); 

Place documentation on the module in the object file. 

#include <linux/version.h> 

Required header. It is included by <linux/module.h>, unless __NO_VERSION__ is defined (see later in this list). 

LINUX_VERSION_CODE 

Integer macro, useful to #ifdef version dependencies. 

char kernel_version[] = UTS_RELEASE; 

Required variable in every module. <linux/module.h> defines it, unless __NO_VERSION__ is defined (see the following entry). 

__NO_VERSION__ 

Preprocessor symbol. Prevents declaration of kernel_version in <linux/module.h>. 

#include <linux/sched.h> 

One of the most important header files. This file contains definitions of much of the kernel API used by the driver, including functions for sleeping and numerous variable declarations. 

struct task_struct *current; 

The current process. 

current->pid 

current->comm 

The process ID and command name for the current process. 

#include <linux/kernel.h> 

int printk(const char * fmt, ...); 

The analogue of printf for kernel code. 

#include <linux/malloc.h> 

void *kmalloc(unsigned int size, int priority); 

void kfree(void *obj); 

Analogue of malloc and freefor kernel code. Use the value of GFP_KERNEL as the priority. 

#include <linux/ioport.h> 

int check_region(unsigned long from, unsigned long extent); 

struct resource *request_region(unsigned long from, unsigned long extent, const char *name); 

void release_region(unsigned long from, unsigned long extent); 

Functions used to register and release I/O ports. 

int check_mem_region (unsigned long start, unsigned long extent); 

struct resource *request_mem_region (unsigned long start, unsigned long extent, const char *name); 

void release_mem_region (unsigned long start, unsigned long extent); 

Macros used to register and release I/O memory regions. 

/proc/ksyms 

The public kernel symbol table. 

/proc/ioports 

The list of ports used by installed devices. 

/proc/iomem 

The list of allocated memory regions.
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The goal of this chapter is to write a complete char device driver. We'll develop a character driver because this class is suitable for most simple hardware devices. Char drivers are also easier to understand than, for example, block drivers or network drivers. Our ultimate aim is to write a modularized char driver, but we won't talk about modularization issues in this chapter. 

Throughout the chapter, we'll present code fragments extracted from a real device driver: scull, short for Simple Character Utility for Loading Localities. scull is a char driver that acts on a memory area as though it were a device. A side effect of this behavior is that, as far as scull is concerned, the word device can be used interchangeably with "the memory area used by scull." 

The advantage of scull is that it isn't hardware dependent, since every computer has memory. scull just acts on some memory, allocated using kmalloc. Anyone can compile and run scull, and scull is portable across the computer architectures on which Linux runs. On the other hand, the device doesn't do anything "useful" other than demonstrating the interface between the kernel and char drivers and allowing the user to run some tests. 

The Design of scull

The first step of driver writing is defining the capabilities (the mechanism) the driver will offer to user programs. Since our "device" is part of the computer's memory, we're free to do what we want with it. It can be a sequential or random-access device, one device or many, and so on. 

To make scull be useful as a template for writing real drivers for real devices, we'll show you how to implement several device abstractions on top of the computer memory, each with a different personality. 

The scull source implements the following devices. Each kind of device implemented by the module is referred to as a type: 

scull0 to scull3 

Four devices each consisting of a memory area that is both global and persistent. Global means that if the device is opened multiple times, the data contained within the device is shared by all the file descriptors that opened it. Persistent means that if the device is closed and reopened, data isn't lost. This device can be fun to work with, because it can be accessed and tested using conventional commands such as cp, cat, and shell I/O redirection; we'll examine its internals in this chapter. 

scullpipe0 to scullpipe3 

Four FIFO (first-in-first-out) devices, which act like pipes. One process reads what another process writes. If multiple processes read the same device, they contend for data. The internals of scullpipe will show how blocking and nonblocking read and writecan be implemented without having to resort to interrupts. Although real drivers synchronize with their devices using hardware interrupts, the topic of blocking and nonblocking operations is an important one and is separate from interrupt handling (covered in Chapter 9, "Interrupt Handling"). 

scullsingle 

scullpriv 

sculluid 

scullwuid 

These devices are similar to scull0, but with some limitations on when an open is permitted. The first (scullsingle) allows only one process at a time to use the driver, whereas scullpriv is private to each virtual console (or X terminal session) because processes on each console/terminal will get a different memory area from processes on other consoles. sculluid and scullwuid can be opened multiple times, but only by one user at a time; the former returns an error of "Device Busy" if another user is locking the device, whereas the latter implements blocking open. These variations of scull add more "policy" than "mechanism;" this kind of behavior is interesting to look at anyway, because some devices require types of management like the ones shown in these scull variations as part of their mechanism. 

Each of the scull devices demonstrates different features of a driver and presents different difficulties. This chapter covers the internals of scull0 to skull3; the more advanced devices are covered in Chapter 5, "Enhanced Char Driver Operations": scullpipe is described in "A Sample Implementation: scullpipe" and the others in "Access Control on a Device File". 

Major and Minor Numbers

Char devices are accessed through names in the filesystem. Those names are called special files or device files or simply nodes of the filesystem tree; they are conventionally located in the /dev directory. Special files for char drivers are identified by a "c" in the first column of the output of ls -l. Block devices appear in /dev as well, but they are identified by a "b." The focus of this chapter is on char devices, but much of the following information applies to block devices as well. 

If you issue the ls -l command, you'll see two numbers (separated by a comma) in the device file entries before the date of last modification, where the file length normally appears. These numbers are the major device number and minor device number for the particular device. The following listing shows a few devices as they appear on a typical system. Their major numbers are 1, 4, 7, and 10, while the minors are 1, 3, 5, 64, 65, and 129. 

 crw-rw-rw- 1 root   root    1, 3   Feb 23 1999  null

 crw------- 1 root   root   10, 1   Feb 23 1999  psaux

 crw------- 1 rubini tty     4, 1   Aug 16 22:22 tty1

 crw-rw-rw- 1 root   dialout 4, 64  Jun 30 11:19 ttyS0

 crw-rw-rw- 1 root   dialout 4, 65  Aug 16 00:00 ttyS1

 crw------- 1 root   sys     7, 1   Feb 23 1999  vcs1

 crw------- 1 root   sys     7, 129 Feb 23 1999  vcsa1

 crw-rw-rw- 1 root   root    1, 5   Feb 23 1999  zero

The major number identifies the driver associated with the device. For example, /dev/null and /dev/zero are both managed by driver 1, whereas virtual consoles and serial terminals are managed by driver 4; similarly, both vcs1 and vcsa1 devices are managed by driver 7. The kernel uses the major number at open time to dispatch execution to the appropriate driver. 

The minor number is used only by the driver specified by the major number; other parts of the kernel don't use it, and merely pass it along to the driver. It is common for a driver to control several devices (as shown in the listing); the minor number provides a way for the driver to differentiate among them. 

Version 2.4 of the kernel, though, introduced a new (optional) feature, the device file system or devfs. If this file system is used, management of device files is simplified and quite different; on the other hand, the new filesystem brings several user-visible incompatibilities, and as we are writing it has not yet been chosen as a default feature by system distributors. The previous description and the following instructions about adding a new driver and special file assume that devfs is not present. The gap is filled later in this chapter, in "The Device Filesystem". 

When devfs is not being used, adding a new driver to the system means assigning a major number to it. The assignment should be made at driver (module) initialization by calling the following function, defined in <linux/fs.h>: 

 int register_chrdev(unsigned int major, const char *name,

      struct file_operations *fops);

The return value indicates success or failure of the operation. A negative return code signals an error; a 0 or positive return code reports successful completion. The major argument is the major number being requested, name is the name of your device, which will appear in /proc/devices, and fops is the pointer to an array of function pointers, used to invoke your driver's entry points, as explained in "File Operations", later in this chapter. 

The major number is a small integer that serves as the index into a static array of char drivers; "Dynamic Allocation of Major Numbers" later in this chapter explains how to select a major number. The 2.0 kernel supported 128 devices; 2.2 and 2.4 increased that number to 256 (while reserving the values 0 and 255 for future uses). Minor numbers, too, are eight-bit quantities; they aren't passed to register_chrdev because, as stated, they are only used by the driver itself. There is tremendous pressure from the developer community to increase the number of possible devices supported by the kernel; increasing device numbers to at least 16 bits is a stated goal for the 2.5 development series. 

Once the driver has been registered in the kernel table, its operations are associated with the given major number. Whenever an operation is performed on a character device file associated with that major number, the kernel finds and invokes the proper function from the file_operations structure. For this reason, the pointer passed to register_chrdev should point to a global structure within the driver, not to one local to the module's initialization function. 

The next question is how to give programs a name by which they can request your driver. A name must be inserted into the /dev directory and associated with your driver's major and minor numbers. 

The command to create a device node on a filesystem is mknod; superuser privileges are required for this operation. The command takes three arguments in addition to the name of the file being created. For example, the command 

 mknod /dev/scull0 c 254 0

creates a char device (c) whose major number is 254 and whose minor number is 0. Minor numbers should be in the range 0 to 255 because, for historical reasons, they are sometimes stored in a single byte. There are sound reasons to extend the range of available minor numbers, but for the time being, the eight-bit limit is still in force. 

Please note that once created by mknod, the special device file remains unless it is explicitly deleted, like any information stored on disk. You may want to remove the device created in this example by issuing rm /dev/scull0. 

Dynamic Allocation of Major Numbers

Some major device numbers are statically assigned to the most common devices. A list of those devices can be found in Documentation/devices.txt within the kernel source tree. Because many numbers are already assigned, choosing a unique number for a new driver can be difficult -- there are far more custom drivers than available major numbers. You could use one of the major numbers reserved for "experimental or local use,"[14] but if you experiment with several "local" drivers or you publish your driver for third parties to use, you'll again experience the problem of choosing a suitable number. 

[14]Major numbers in the ranges 60 to 63, 120 to 127, and 240 to 254 are reserved for local and experimental use: no real device will be assigned such major numbers.

Fortunately (or rather, thanks to someone's ingenuity), you can request dynamic assignment of a major number. If the argument major is set to 0 when you call register_chrdev, the function selects a free number and returns it. The major number returned is always positive, while negative return values are error codes. Please note the behavior is slightly different in the two cases: the function returns the allocated major number if the caller requests a dynamic number, but returns 0 (not the major number) when successfully registering a predefined major number. 

For private drivers, we strongly suggest that you use dynamic allocation to obtain your major device number, rather than choosing a number randomly from the ones that are currently free. If, on the other hand, your driver is meant to be useful to the community at large and be included into the official kernel tree, you'll need to apply to be assigned a major number for exclusive use. 

The disadvantage of dynamic assignment is that you can't create the device nodes in advance because the major number assigned to your module can't be guaranteed to always be the same. This means that you won't be able to use loading-on-demand of your driver, an advanced feature introduced in Chapter 11, "kmod and Advanced Modularization". For normal use of the driver, this is hardly a problem, because once the number has been assigned, you can read it from /proc/devices. 

To load a driver using a dynamic major number, therefore, the invocation of insmod can be replaced by a simple script that after calling insmodreads /proc/devices in order to create the special file(s). 

A typical /proc/devices file looks like the following: 

Character devices:

 1 mem

 2 pty

 3 ttyp

 4 ttyS

 6 lp

 7 vcs

 10 misc

 13 input

 14 sound

 21 sg

180 usb

Block devices:

 2 fd

 8 sd

 11 sr

 65 sd

 66 sd

The script to load a module that has been assigned a dynamic number can thus be written using a tool such as awk to retrieve information from /proc/devices in order to create the files in /dev. 

The following script, scull_load, is part of the scull distribution. The user of a driver that is distributed in the form of a module can invoke such a script from the system's rc.local file or call it manually whenever the module is needed. 

#!/bin/sh

module="scull"

device="scull"

mode="664"

# invoke insmod with all arguments we were passed

# and use a pathname, as newer modutils don't look in . by default

/sbin/insmod -f ./$module.o $* || exit 1

# remove stale nodes

rm -f /dev/${device}[0-3]

major=`awk "\\$2==\"$module\" {print \\$1}" /proc/devices`

mknod /dev/${device}0 c $major 0

mknod /dev/${device}1 c $major 1

mknod /dev/${device}2 c $major 2

mknod /dev/${device}3 c $major 3

# give appropriate group/permissions, and change the group.

# Not all distributions have staff; some have "wheel" instead.

group="staff"

grep '^staff:' /etc/group > /dev/null || group="wheel"

chgrp $group /dev/${device}[0-3]

chmod $mode /dev/${device}[0-3]

The script can be adapted for another driver by redefining the variables and adjusting the mknodlines. The script just shown creates four devices because four is the default in the scull sources. 

The last few lines of the script may seem obscure: why change the group and mode of a device? The reason is that the script must be run by the superuser, so newly created special files are owned by root. The permission bits default so that only root has write access, while anyone can get read access. Normally, a device node requires a different access policy, so in some way or another access rights must be changed. The default in our script is to give access to a group of users, but your needs may vary. Later, in the section "Access Control on a Device File" in Chapter 5, "Enhanced Char Driver Operations", the code for sculluid will demonstrate how the driver can enforce its own kind of authorization for device access. A scull_unload script is then available to clean up the /dev directory and remove the module. 

As an alternative to using a pair of scripts for loading and unloading, you could write an init script, ready to be placed in the directory your distribution uses for these scripts.[15] As part of the scull source, we offer a fairly complete and configurable example of an init script, called scull.init; it accepts the conventional arguments -- either "start" or "stop" or "restart" -- and performs the role of both scull_load and scull_unload. 

[15] Distributions vary widely on the location of init scripts; the most common directories used are /etc/init.d, /etc/rc.d/init.d, and /sbin/init.d. In addition, if your script is to be run at boot time, you will need to make a link to it from the appropriate run-level directory (i.e., .../rc3.d).

If repeatedly creating and destroying /dev nodes sounds like overkill, there is a useful workaround. If you are only loading and unloading a single driver, you can just use rmmod and insmodafter the first time you create the special files with your script: dynamic numbers are not randomized, and you can count on the same number to be chosen if you don't mess with other (dynamic) modules. Avoiding lengthy scripts is useful during development. But this trick, clearly, doesn't scale to more than one driver at a time. 

The best way to assign major numbers, in our opinion, is by defaulting to dynamic allocation while leaving yourself the option of specifying the major number at load time, or even at compile time. The code we suggest using is similar to the code introduced for autodetection of port numbers. The scull implementation uses a global variable, scull_major, to hold the chosen number. The variable is initialized to SCULL_MAJOR, defined in scull.h. The default value of SCULL_MAJOR in the distributed source is 0, which means "use dynamic assignment." The user can accept the default or choose a particular major number, either by modifying the macro before compiling or by specifying a value for scull_major on the insmod command line. Finally, by using the scull_load script, the user can pass arguments to insmod on scull_load's command line.[16] 

[16]The init script scull.init doesn't accept driver options on the command line, but it supports a configuration file because it's designed for automatic use at boot and shutdown time.

Here's the code we use in scull's source to get a major number: 

 result = register_chrdev(scull_major, "scull", &scull_fops);

 if (result < 0) {

  printk(KERN_WARNING "scull: can't get major %d\n",scull_major);

  return result;

 }

 if (scull_major == 0) scull_major = result; /* dynamic */

Removing a Driver from the System

When a module is unloaded from the system, the major number must be released. This is accomplished with the following function, which you call from the module's cleanup function: 

 int unregister_chrdev(unsigned int major, const char *name);

The arguments are the major number being released and the name of the associated device. The kernel compares the name to the registered name for that number, if any: if they differ, -EINVAL is returned. The kernel also returns -EINVAL if the major number is out of the allowed range. 

Failing to unregister the resource in the cleanup function has unpleasant effects. /proc/devices will generate a fault the next time you try to read it, because one of the name strings still points to the module's memory, which is no longer mapped. This kind of fault is called an oops because that's the message the kernel prints when it tries to access invalid addresses.[17] 

[17]The word oops is used as both a noun and a verb by Linux enthusiasts.

When you unload the driver without unregistering the major number, recovery will be difficult because the strcmpfunction in unregister_chrdev must dereference a pointer (name) to the original module. If you ever fail to unregister a major number, you must reload both the same module and another one built on purpose to unregister the major. The faulty module will, with luck, get the same address, and the name string will be in the same place, if you didn't change the code. The safer alternative, of course, is to reboot the system. 

In addition to unloading the module, you'll often need to remove the device files for the removed driver. The task can be accomplished by a script that pairs to the one used at load time. The script scull_unload does the job for our sample device; as an alternative, you can invoke scull.init stop. 

If dynamic device files are not removed from /dev, there's a possibility of unexpected errors: a spare /dev/framegrabber on a developer's computer might refer to a fire-alarm device one month later if both drivers used a dynamic major number. "No such file or directory" is a friendlier response to opening /dev/framegrabber than the new driver would produce. 

dev_t and kdev_t

So far we've talked about the major number. Now it's time to discuss the minor number and how the driver uses it to differentiate among devices. 

Every time the kernel calls a device driver, it tells the driver which device is being acted upon. The major and minor numbers are paired in a single data type that the driver uses to identify a particular device. The combined device number (the major and minor numbers concatenated together) resides in the field i_rdev of the inode structure, which we introduce later. Some driver functions receive a pointer to struct inode as the first argument. So if you call the pointer inode (as most driver writers do), the function can extract the device number by looking at inode->i_rdev. 

Historically, Unix declared dev_t (device type) to hold the device numbers. It used to be a 16-bit integer value defined in <sys/types.h>. Nowadays, more than 256 minor numbers are needed at times, but changing dev_t is difficult because there are applications that "know" the internals of dev_t and would break if the structure were to change. Thus, while much of the groundwork has been laid for larger device numbers, they are still treated as 16-bit integers for now. 

Within the Linux kernel, however, a different type, kdev_t, is used. This data type is designed to be a black box for every kernel function. User programs do not know about kdev_t at all, and kernel functions are unaware of what is inside a kdev_t. If kdev_t remains hidden, it can change from one kernel version to the next as needed, without requiring changes to everyone's device drivers. 

The information about kdev_t is confined in <linux/kdev_t.h>, which is mostly comments. The header makes instructive reading if you're interested in the reasoning behind the code. There's no need to include the header explicitly in the drivers, however, because <linux/fs.h> does it for you. 

The following macros and functions are the operations you can perform on kdev_t: 

MAJOR(kdev_t dev); 

Extract the major number from a kdev_t structure. 

MINOR(kdev_t dev); 

Extract the minor number. 

MKDEV(int ma, int mi); 

Create a kdev_t built from major and minor numbers. 

kdev_t_to_nr(kdev_t dev); 

Convert a kdev_t type to a number (a dev_t). 

to_kdev_t(int dev); 

Convert a number to kdev_t. Note that dev_t is not defined in kernel mode, and therefore int is used. 

As long as your code uses these operations to manipulate device numbers, it should continue to work even as the internal data structures change. 

File Operations

In the next few sections, we'll look at the various operations a driver can perform on the devices it manages. An open device is identified internally by a file structure, and the kernel uses the file_operations structure to access the driver's functions. The structure, defined in <linux/fs.h>, is an array of function pointers. Each file is associated with its own set of functions (by including a field called f_op that points to a file_operations structure). The operations are mostly in charge of implementing the system calls and are thus named open, read, and so on. We can consider the file to be an "object" and the functions operating on it to be its "methods," using object-oriented programming terminology to denote actions declared by an object to act on itself. This is the first sign of object-oriented programming we see in the Linux kernel, and we'll see more in later chapters. 

Conventionally, a file_operations structure or a pointer to one is called fops (or some variation thereof); we've already seen one such pointer as an argument to the register_chrdev call. Each field in the structure must point to the function in the driver that implements a specific operation, or be left NULL for unsupported operations. The exact behavior of the kernel when a NULL pointer is specified is different for each function, as the list later in this section shows. 

The file_operations structure has been slowly getting bigger as new functionality is added to the kernel. The addition of new operations can, of course, create portability problems for device drivers. Instantiations of the structure in each driver used to be declared using standard C syntax, and new operations were normally added to the end of the structure; a simple recompilation of the drivers would place a NULL value for that operation, thus selecting the default behavior, usually what you wanted. 

Since then, kernel developers have switched to a "tagged" initialization format that allows initialization of structure fields by name, thus circumventing most problems with changed data structures. The tagged initialization, however, is not standard C but a (useful) extension specific to the GNU compiler. We will look at an example of tagged structure initialization shortly. 

The following list introduces all the operations that an application can invoke on a device. We've tried to keep the list brief so it can be used as a reference, merely summarizing each operation and the default kernel behavior when a NULL pointer is used. You can skip over this list on your first reading and return to it later. 

The rest of the chapter, after describing another important data structure (the file, which actually includes a pointer to its own file_operations), explains the role of the most important operations and offers hints, caveats, and real code examples. We defer discussion of the more complex operations to later chapters because we aren't ready to dig into topics like memory management, blocking operations, and asynchronous notification quite yet. 

The following list shows what operations appear in struct file_operations for the 2.4 series of kernels, in the order in which they appear. Although there are minor differences between 2.4 and earlier kernels, they will be dealt with later in this chapter, so we are just sticking to 2.4 for a while. The return value of each operation is 0 for success or a negative error code to signal an error, unless otherwise noted. 

loff_t (*llseek) (struct file *, loff_t, int); 

The llseek method is used to change the current read/write position in a file, and the new position is returned as a (positive) return value. The loff_t is a "long offset" and is at least 64 bits wide even on 32-bit platforms. Errors are signaled by a negative return value. If the function is not specified for the driver, a seek relative to end-of-file fails, while other seeks succeed by modifying the position counter in the file structure (described in "The file Structure" later in this chapter). 

ssize_t (*read) (struct file *, char *, size_t, loff_t *); 

Used to retrieve data from the device. A null pointer in this position causes the read system call to fail with -EINVAL ("Invalid argument"). A non-negative return value represents the number of bytes successfully read (the return value is a "signed size" type, usually the native integer type for the target platform). 

ssize_t (*write) (struct file *, const char *, size_t, loff_t *); 

Sends data to the device. If missing, -EINVAL is returned to the program calling the write system call. The return value, if non-negative, represents the number of bytes successfully written. 

int (*readdir) (struct file *, void *, filldir_t); 

This field should be NULL for device files; it is used for reading directories, and is only useful to filesystems. 

unsigned int (*poll) (struct file *, struct poll_table_struct *); 

The poll method is the back end of two system calls, poll and select, both used to inquire if a device is readable or writable or in some special state. Either system call can block until a device becomes readable or writable. If a driver doesn't define its pollmethod, the device is assumed to be both readable and writable, and in no special state. The return value is a bit mask describing the status of the device. 

int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); 

The ioctl system call offers a way to issue device-specific commands (like formatting a track of a floppy disk, which is neither reading nor writing). Additionally, a few ioctl commands are recognized by the kernel without referring to the fops table. If the device doesn't offer an ioctl entry point, the system call returns an error for any request that isn't predefined (-ENOTTY, "No such ioctl for device"). If the device method returns a non-negative value, the same value is passed back to the calling program to indicate successful completion. 

int (*mmap) (struct file *, struct vm_area_struct *); 

mmap is used to request a mapping of device memory to a process's address space. If the device doesn't implement this method, the mmap system call returns -ENODEV. 

int (*open) (struct inode *, struct file *); 

Though this is always the first operation performed on the device file, the driver is not required to declare a corresponding method. If this entry is NULL, opening the device always succeeds, but your driver isn't notified. 

int (*flush) (struct file *); 

The flush operation is invoked when a process closes its copy of a file descriptor for a device; it should execute (and wait for) any outstanding operations on the device. This must not be confused with the fsync operation requested by user programs. Currently, flush is used only in the network file system (NFS) code. If flush is NULL, it is simply not invoked. 

int (*release) (struct inode *, struct file *); 

This operation is invoked when the file structure is being released. Like open, release can be missing.[18] 

[18]Note that release isn't invoked every time a process calls close. Whenever a file structure is shared (for example, after a fork or a dup), release won't be invoked until all copies are closed. If you need to flush pending data when any copy is closed, you should implement the flush method.

int (*fsync) (struct inode *, struct dentry *, int); 

This method is the back end of the fsync system call, which a user calls to flush any pending data. If not implemented in the driver, the system call returns -EINVAL. 

int (*fasync) (int, struct file *, int); 

This operation is used to notify the device of a change in its FASYNC flag. Asynchronous notification is an advanced topic and is described in Chapter 5, "Enhanced Char Driver Operations". The field can be NULL if the driver doesn't support asynchronous notification. 

int (*lock) (struct file *, int, struct file_lock *); 

The lock method is used to implement file locking; locking is an indispensable feature for regular files, but is almost never implemented by device drivers. 

ssize_t (*readv) (struct file *, const struct iovec *, unsigned long, loff_t *); 

ssize_t (*writev) (struct file *, const struct iovec *, unsigned long, loff_t *); 

These methods, added late in the 2.3 development cycle, implement scatter/gather read and write operations. Applications occasionally need to do a single read or write operation involving multiple memory areas; these system calls allow them to do so without forcing extra copy operations on the data. 

struct module *owner; 

This field isn't a method like everything else in the file_operations structure. Instead, it is a pointer to the module that "owns" this structure; it is used by the kernel to maintain the module's usage count. 

The scull device driver implements only the most important device methods, and uses the tagged format to declare its file_operations structure: 

struct file_operations scull_fops = {

 llseek:  scull_llseek,

 read:  scull_read,

 write:  scull_write,

 ioctl:  scull_ioctl,

 open:  scull_open,

 release: scull_release,

};

This declaration uses the tagged structure initialization syntax, as we described earlier. This syntax is preferred because it makes drivers more portable across changes in the definitions of the structures, and arguably makes the code more compact and readable. Tagged initialization allows the reordering of structure members; in some cases, substantial performance improvements have been realized by placing frequently accessed members in the same hardware cache line. 

It is also necessary to set the owner field of the file_operations structure. In some kernel code, you will often see owner initialized with the rest of the structure, using the tagged syntax as follows: 

 owner: THIS_MODULE,

That approach works, but only on 2.4 kernels. A more portable approach is to use the SET_MODULE_OWNER macro, which is defined in <linux/module.h>. scullperforms this initialization as follows: 

 SET_MODULE_OWNER(&scull_fops);

This macro works on any structure that has an owner field; we will encounter this field again in other contexts later in the book. 

The file Structure

struct file, defined in <linux/fs.h>, is the second most important data structure used in device drivers. Note that a file has nothing to do with the FILEs of user-space programs. A FILE is defined in the C library and never appears in kernel code. A struct file, on the other hand, is a kernel structure that never appears in user programs. 

The file structure represents an open file. (It is not specific to device drivers; every open file in the system has an associated struct file in kernel space.) It is created by the kernel on open and is passed to any function that operates on the file, until the last close. After all instances of the file are closed, the kernel releases the data structure. An open file is different from a disk file, represented by struct inode. 

In the kernel sources, a pointer to struct file is usually called either file or filp ("file pointer"). We'll consistently call the pointer filp to prevent ambiguities with the structure itself. Thus, file refers to the structure and filp to a pointer to the structure. 

The most important fields of struct file are shown here. As in the previous section, the list can be skipped on a first reading. In the next section though, when we face some real C code, we'll discuss some of the fields, so they are here for you to refer to. 

mode_t f_mode; 

The file mode identifies the file as either readable or writable (or both), by means of the bits FMODE_READ and FMODE_WRITE. You might want to check this field for read/write permission in your ioctl function, but you don't need to check permissions for read and write because the kernel checks before invoking your method. An attempt to write without permission, for example, is rejected without the driver even knowing about it. 

loff_t f_pos; 

The current reading or writing position. loff_t is a 64-bit value (long long in gcc terminology). The driver can read this value if it needs to know the current position in the file, but should never change it (read and write should update a position using the pointer they receive as the last argument instead of acting on filp->f_pos directly). 

unsigned int f_flags; 

These are the file flags, such as O_RDONLY, O_NONBLOCK, and O_SYNC. A driver needs to check the flag for nonblocking operation, while the other flags are seldom used. In particular, read/write permission should be checked using f_mode instead of f_flags. All the flags are defined in the header <linux/fcntl.h>. 

struct file_operations *f_op; 

The operations associated with the file. The kernel assigns the pointer as part of its implementation of open, and then reads it when it needs to dispatch any operations. The value in filp->f_op is never saved for later reference; this means that you can change the file operations associated with your file whenever you want, and the new methods will be effective immediately after you return to the caller. For example, the code for open associated with major number 1 (/dev/null, /dev/zero, and so on) substitutes the operations in filp->f_op depending on the minor number being opened. This practice allows the implementation of several behaviors under the same major number without introducing overhead at each system call. The ability to replace the file operations is the kernel equivalent of "method overriding" in object-oriented programming. 

void *private_data; 

The open system call sets this pointer to NULL before calling the openmethod for the driver. The driver is free to make its own use of the field or to ignore it. The driver can use the field to point to allocated data, but then must free memory in the release method before the file structure is destroyed by the kernel. private_data is a useful resource for preserving state information across system calls and is used by most of our sample modules. 

struct dentry *f_dentry; 

The directory entry (dentry) structure associated with the file. Dentries are an optimization introduced in the 2.1 development series. Device driver writers normally need not concern themselves with dentry structures, other than to access the inode structure as filp->f_dentry->d_inode. 

The real structure has a few more fields, but they aren't useful to device drivers. We can safely ignore those fields because drivers never fill file structures; they only access structures created elsewhere. 

open and release

Now that we've taken a quick look at the fields, we'll start using them in real scull functions. 

The open Method

The open method is provided for a driver to do any initialization in preparation for later operations. In addition, open usually increments the usage count for the device so that the module won't be unloaded before the file is closed. The count, described in "The Usage Count" in Chapter 2, "Building and Running Modules", is then decremented by the release method. 

In most drivers, open should perform the following tasks: 

· Increment the usage count 

· Check for device-specific errors (such as device-not-ready or similar hardware problems) 

· Initialize the device, if it is being opened for the first time 

· Identify the minor number and update the f_op pointer, if necessary 

· Allocate and fill any data structure to be put in filp->private_data 

In scull, most of the preceding tasks depend on the minor number of the device being opened. Therefore, the first thing to do is identify which device is involved. We can do that by looking at inode->i_rdev. 

We've already talked about how the kernel doesn't use the minor number of the device, so the driver is free to use it at will. In practice, different minor numbers are used to access different devices or to open the same device in a different way. For example, /dev/st0 (minor number 0) and /dev/st1 (minor 1) refer to different SCSI tape drives, whereas /dev/nst0 (minor 128) is the same physical device as /dev/st0, but it acts differently (it doesn't rewind the tape when it is closed). All of the tape device files have different minor numbers, so that the driver can tell them apart. 

A driver never actually knows the name of the device being opened, just the device number -- and users can play on this indifference to names by aliasing new names to a single device for their own convenience. If you create two special files with the same major/minor pair, the devices are one and the same, and there is no way to differentiate between them. The same effect can be obtained using a symbolic or hard link, and the preferred way to implement aliasing is creating a symbolic link. 

The scull driver uses the minor number like this: the most significant nibble (upper four bits) identifies the type (personality) of the device, and the least significant nibble (lower four bits) lets you distinguish between individual devices if the type supports more than one device instance. Thus, scull0 is different from scullpipe0 in the top nibble, while scull0 and scull1 differ in the bottom nibble.[19] Two macros (TYPE and NUM) are defined in the source to extract the bits from a device number, as shown here: 

[19]Bit splitting is a typical way to use minor numbers. The IDE driver, for example, uses the top two bits for the disk number, and the bottom six bits for the partition number.

#define TYPE(dev) (MINOR(dev) >> 4) /* high nibble */

#define NUM(dev) (MINOR(dev) & 0xf) /* low nibble */

For each device type, scull defines a specific file_operations structure, which is placed in filp->f_op at open time. The following code shows how multiple fops are implemented: 

struct file_operations *scull_fop_array[]={

 &scull_fops,  /* type 0 */

 &scull_priv_fops, /* type 1 */

 &scull_pipe_fops, /* type 2 */

 &scull_sngl_fops, /* type 3 */

 &scull_user_fops, /* type 4 */

 &scull_wusr_fops /* type 5 */

};

#define SCULL_MAX_TYPE 5

/* In scull_open, the fop_array is used according to TYPE(dev) */

 int type = TYPE(inode->i_rdev);

  if (type > SCULL_MAX_TYPE) return -ENODEV;

  filp->f_op = scull_fop_array[type];

The kernel invokes open according to the major number; scull uses the minor number in the macros just shown. TYPE is used to index into scull_fop_array in order to extract the right set of methods for the device type being opened. 

In scull, filp->f_op is assigned to the correct file_operations structure as determined by the device type, found in the minor number. The open method declared in the new fops is then invoked. Usually, a driver doesn't invoke its own fops, because they are used by the kernel to dispatch the right driver method. But when your open method has to deal with different device types, you might want to call fops->open after modifying the fops pointer according to the minor number being opened. 

The actual code for scull_open follows. It uses the TYPE and NUM macros defined in the previous code snapshot to split the minor number: 

int scull_open(struct inode *inode, struct file *filp)

{

 Scull_Dev *dev; /* device information */

 int num = NUM(inode->i_rdev);

 int type = TYPE(inode->i_rdev);

 /*

  * If private data is not valid, we are not using devfs

  * so use the type (from minor nr.) to select a new f_op

  */

 if (!filp->private_data && type) {

  if (type > SCULL_MAX_TYPE) return -ENODEV;

  filp->f_op = scull_fop_array[type];

  return filp->f_op->open(inode, filp); /* dispatch to specific open */

 }

 /* type 0, check the device number (unless private_data valid) */

 dev = (Scull_Dev *)filp->private_data;

 if (!dev) {

  if (num >= scull_nr_devs) return -ENODEV;

  dev = &scull_devices[num];

  filp->private_data = dev; /* for other methods */

 }

 MOD_INC_USE_COUNT; /* Before we maybe sleep */

 /* now trim to 0 the length of the device if open was write-only */

 if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) {

  if (down_interruptible(&dev->sem)) {

   MOD_DEC_USE_COUNT;

   return -ERESTARTSYS;

  }

  scull_trim(dev); /* ignore errors */

  up(&dev->sem);

 }

 return 0;   /* success */

}

A few explanations are due here. The data structure used to hold the region of memory is Scull_Dev, which will be introduced shortly. The global variables scull_nr_devs and scull_devices[] (all lowercase) are the number of available devices and the actual array of pointers to Scull_Dev. 

The calls to down_interruptible and up can be ignored for now; we will get to them shortly. 

The code looks pretty sparse because it doesn't do any particular device handling when open is called. It doesn't need to, because the scull0-3 device is global and persistent by design. Specifically, there's no action like "initializing the device on first open" because we don't keep an open count for sculls, just the module usage count. 

Given that the kernel can maintain the usage count of the module via the owner field in the file_operations structure, you may be wondering why we increment that count manually here. The answer is that older kernels required modules to do all of the work of maintaining their usage count -- the owner mechanism did not exist. To be portable to older kernels, scull increments its own usage count. This behavior will cause the usage count to be too high on 2.4 systems, but that is not a problem because it will still drop to zero when the module is not being used. 

The only real operation performed on the device is truncating it to a length of zero when the device is opened for writing. This is performed because, by design, overwriting a pscull device with a shorter file results in a shorter device data area. This is similar to the way opening a regular file for writing truncates it to zero length. The operation does nothing if the device is opened for reading. 

We'll see later how a real initialization works when we look at the code for the other scull personalities. 

The release Method

The role of the release method is the reverse of open. Sometimes you'll find that the method implementation is called device_close instead of device_release. Either way, the device method should perform the following tasks: 

· Deallocate anything that open allocated in filp->private_data 

· Shut down the device on last close 

· Decrement the usage count 

The basic form of scull has no hardware to shut down, so the code required is minimal:[20] 

[20]The other flavors of the device are closed by different functions, because scull_open substituted a different filp->f_op for each device. We'll see those later.

int scull_release(struct inode *inode, struct file *filp)

{

 MOD_DEC_USE_COUNT;

 return 0;

}

It is important to decrement the usage count if you incremented it at open time, because the kernel will never be able to unload the module if the counter doesn't drop to zero. 

How can the counter remain consistent if sometimes a file is closed without having been opened? After all, the dupand fork system calls will create copies of open files without calling open; each of those copies is then closed at program termination. For example, most programs don't open their stdin file (or device), but all of them end up closing it. 

The answer is simple: not every close system call causes the release method to be invoked. Only the ones that actually release the device data structure invoke the method -- hence its name. The kernel keeps a counter of how many times a file structure is being used. Neither fork nor dup creates a new file structure (only open does that); they just increment the counter in the existing structure. 

The close system call executes the release method only when the counter for the file structure drops to zero, which happens when the structure is destroyed. This relationship between the release method and the closesystem call guarantees that the usage count for modules is always consistent. 

Note that the flush method is called every time an application calls close. However, very few drivers implement flush, because usually there's nothing to perform at close time unless release is involved. 

As you may imagine, the previous discussion applies even when the application terminates without explicitly closing its open files: the kernel automatically closes any file at process exit time by internally using the close system call. 

scull's Memory Usage

Before introducing the read and write operations, we'd better look at how and why scull performs memory allocation. "How" is needed to thoroughly understand the code, and "why" demonstrates the kind of choices a driver writer needs to make, although scull is definitely not typical as a device. 

This section deals only with the memory allocation policy in scull and doesn't show the hardware management skills you'll need to write real drivers. Those skills are introduced in Chapter 8, "Hardware Management", and in Chapter 9, "Interrupt Handling". Therefore, you can skip this section if you're not interested in understanding the inner workings of the memory-oriented scull driver. 

The region of memory used by scull, also called a device here, is variable in length. The more you write, the more it grows; trimming is performed by overwriting the device with a shorter file. 

The implementation chosen for scull is not a smart one. The source code for a smart implementation would be more difficult to read, and the aim of this section is to show read and write, not memory management. That's why the code just uses kmallocand kfree without resorting to allocation of whole pages, although that would be more efficient. 

On the flip side, we didn't want to limit the size of the "device" area, for both a philosophical reason and a practical one. Philosophically, it's always a bad idea to put arbitrary limits on data items being managed. Practically, scull can be used to temporarily eat up your system's memory in order to run tests under low-memory conditions. Running such tests might help you understand the system's internals. You can use the command cp /dev/zero /dev/scull0 to eat all the real RAM with scull, and you can use the dd utility to choose how much data is copied to the scull device. 

In scull, each device is a linked list of pointers, each of which points to a Scull_Dev structure. Each such structure can refer, by default, to at most four million bytes, through an array of intermediate pointers. The released source uses an array of 1000 pointers to areas of 4000 bytes. We call each memory area a quantum and the array (or its length) a quantum set. A scull device and its memory areas are shown in Figure 3-1. 
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Figure 3-1. The layout of a scull device

The chosen numbers are such that writing a single byte in scull consumes eight or twelve thousand bytes of memory: four thousand for the quantum and four or eight thousand for the quantum set (according to whether a pointer is represented in 32 bits or 64 bits on the target platform). If, instead, you write a huge amount of data, the overhead of the linked list is not too bad. There is only one list element for every four megabytes of data, and the maximum size of the device is limited by the computer's memory size. 

Choosing the appropriate values for the quantum and the quantum set is a question of policy, rather than mechanism, and the optimal sizes depend on how the device is used. Thus, the scull driver should not force the use of any particular values for the quantum and quantum set sizes. In scull, the user can change the values in charge in several ways: by changing the macros SCULL_QUANTUM and SCULL_QSET in scull.h at compile time, by setting the integer values scull_quantum and scull_qset at module load time, or by changing both the current and default values using ioctl at runtime. 

Using a macro and an integer value to allow both compile-time and load-time configuration is reminiscent of how the major number is selected. We use this technique for whatever value in the driver is arbitrary, or related to policy. 

The only question left is how the default numbers have been chosen. In this particular case, the problem is finding the best balance between the waste of memory resulting from half-filled quanta and quantum sets and the overhead of allocation, deallocation, and pointer chaining that occurs if quanta and sets are small. 

Additionally, the internal design of kmallocshould be taken into account. We won't touch the point now, though; the innards of kmalloc are explored in "The Real Story of kmalloc" in Chapter 7, "Getting Hold of Memory". 

The choice of default numbers comes from the assumption that massive amounts of data are likely to be written to scull while testing it, although normal use of the device will most likely transfer just a few kilobytes of data. 

The data structure used to hold device information is as follows: 

typedef struct Scull_Dev {

 void **data;

 struct Scull_Dev *next; /* next list item */

 int quantum;    /* the current quantum size */

 int qset;     /* the current array size */

 unsigned long size;

 devfs_handle_t handle; /* only used if devfs is there */

 unsigned int access_key; /* used by sculluid and scullpriv */

 struct semaphore sem;  /* mutual exclusion semaphore  */

} Scull_Dev;

The next code fragment shows in practice how Scull_Dev is used to hold data. The function scull_trim is in charge of freeing the whole data area and is invoked by scull_open when the file is opened for writing. It simply walks through the list and frees any quantum and quantum set it finds. 

int scull_trim(Scull_Dev *dev)

{

 Scull_Dev *next, *dptr;

 int qset = dev->qset; /* "dev" is not null */

 int i;

 for (dptr = dev; dptr; dptr = next) { /* all the list items */

  if (dptr->data) {

   for (i = 0; i < qset; i++)

    if (dptr->data[i])

     kfree(dptr->data[i]);

   kfree(dptr->data);

   dptr->data=NULL;

  }

  next=dptr->next;

  if (dptr != dev) kfree(dptr); /* all of them but the first */

 }

 dev->size = 0;

 dev->quantum = scull_quantum;

 dev->qset = scull_qset;

 dev->next = NULL;

 return 0;

}

A Brief Introduction to Race Conditions

Now that you understand how scull's memory management works, here is a scenario to consider. Two processes, A and B, both have the same scull device open for writing. Both attempt simultaneously to append data to the device. A new quantum is required for this operation to succeed, so each process allocates the required memory and stores a pointer to it in the quantum set. 

The result is trouble. Because both processes see the same scull device, each will store its new memory in the same place in the quantum set. If A stores its pointer first, B will overwrite that pointer when it does its store. Thus the memory allocated by A, and the data written therein, will be lost. 

This situation is a classic race condition; the results vary depending on who gets there first, and usually something undesirable happens in any case. On uniprocessor Linux systems, the scull code would not have this sort of problem, because processes running kernel code are not preempted. On SMP systems, however, life is more complicated. Processes A and B could easily be running on different processors and could interfere with each other in this manner. 

The Linux kernel provides several mechanisms for avoiding and managing race conditions. A full description of these mechanisms will have to wait until Chapter 9, "Interrupt Handling", but a beginning discussion is appropriate here. 

A semaphore is a general mechanism for controlling access to resources. In its simplest form, a semaphore may be used for mutual exclusion; processes using semaphores in the mutual exclusion mode are prevented from simultaneously running the same code or accessing the same data. This sort of semaphore is often called a mutex, from "mutual exclusion." 

Semaphores in Linux are defined in <asm/semaphore.h>. They have a type of struct semaphore, and a driver should only act on them using the provided interface. In scull, one semaphore is allocated for each device, in the Scull_Dev structure. Since the devices are entirely independent of each other, there is no need to enforce mutual exclusion across multiple devices. 

Semaphores must be initialized prior to use by passing a numeric argument to sema_init. For mutual exclusion applications (i.e., keeping multiple threads from accessing the same data simultaneously), the semaphore should be initialized to a value of 1, which means that the semaphore is available. The following code in scull's module initialization function (scull_init) shows how the semaphores are initialized as part of setting up the devices. 

 for (i=0; i < scull_nr_devs; i++) {

  scull_devices[i].quantum = scull_quantum;

  scull_devices[i].qset = scull_qset;

  sema_init(&scull_devices[i].sem, 1);

 }

A process wishing to enter a section of code protected by a semaphore must first ensure that no other process is already there. Whereas in classical computer science the function to obtain a semaphore is often called P, in Linux you'll need to call down or down_interruptible. These functions test the value of the semaphore to see if it is greater than 0; if so, they decrement the semaphore and return. If the semaphore is 0, the functions will sleep and try again after some other process, which has presumably freed the semaphore, wakes them up. 

The down_interruptible function can be interrupted by a signal, whereas down will not allow signals to be delivered to the process. You almost always want to allow signals; otherwise, you risk creating unkillable processes and other undesirable behavior. A complication of allowing signals, however, is that you always have to check if the function (here down_interruptible) was interrupted. As usual, the function returns 0 for success and nonzero in case of failure. If the process is interrupted, it will not have acquired the semaphores; thus, you won't need to call up. A typical call to invoke a semaphore therefore normally looks something like this: 

 if (down_interruptible (&sem))


return -ERESTARTSYS;

The -ERESTARTSYS return value tells the system that the operation was interrupted by a signal. The kernel function that called the device method will either retry it or return -EINTR to the application, according to how signal handling has been configured by the application. Of course, your code may have to perform cleanup work before returning if interrupted in this mode. 

A process that obtains a semaphore must always release it afterward. Whereas computer science calls the release function V, Linux uses up instead. A simple call like 

 up (&sem);

will increment the value of the semaphore and wake up any processes that are waiting for the semaphore to become available. 

Care must be taken with semaphores. The data protected by the semaphore must be clearly defined, and all code that accesses that data must obtain the semaphore first. Code that uses down_interruptible to obtain a semaphore must not call another function that also attempts to obtain that semaphore, or deadlock will result. If a routine in your driver fails to release a semaphore it holds (perhaps as a result of an error return), any further attempts to obtain that semaphore will stall. Mutual exclusion in general can be tricky, and benefits from a well-defined and methodical approach. 

In scull, the per-device semaphore is used to protect access to the stored data. Any code that accesses the data field of the Scull_Dev structure must first have obtained the semaphore. To avoid deadlocks, only functions that implement device methods will try to obtain the semaphore. Internal routines, such as scull_trimshown earlier, assume that the semaphore has already been obtained. As long as these invariants hold, access to the Scull_Dev data structure is safe from race conditions. 

read and write

The read and write methods perform a similar task, that is, copying data from and to application code. Therefore, their prototypes are pretty similar and it's worth introducing them at the same time: 

 ssize_t read(struct file *filp, char *buff,

     size_t count, loff_t *offp);

 ssize_t write(struct file *filp, const char *buff,

     size_t count, loff_t *offp);

For both methods, filp is the file pointer and count is the size of the requested data transfer. The buff argument points to the user buffer holding the data to be written or the empty buffer where the newly read data should be placed. Finally, offp is a pointer to a "long offset type" object that indicates the file position the user is accessing. The return value is a "signed size type;" its use is discussed later. 

As far as data transfer is concerned, the main issue associated with the two device methods is the need to transfer data between the kernel address space and the user address space. The operation cannot be carried out through pointers in the usual way, or through memcpy. User-space addresses cannot be used directly in kernel space, for a number of reasons. 

One big difference between kernel-space addresses and user-space addresses is that memory in user-space can be swapped out. When the kernel accesses a user-space pointer, the associated page may not be present in memory, and a page fault is generated. The functions we introduce in this section and in "Using the ioctl Argument" in Chapter 5, "Enhanced Char Driver Operations" use some hidden magic to deal with page faults in the proper way even when the CPU is executing in kernel space. 

Also, it's interesting to note that the x86 port of Linux 2.0 used a completely different memory map for user space and kernel space. Thus, user-space pointers couldn't be dereferenced at all from kernel space. 

If the target device is an expansion board instead of RAM, the same problem arises, because the driver must nonetheless copy data between user buffers and kernel space (and possibly between kernel space and I/O memory). 

Cross-space copies are performed in Linux by special functions, defined in <asm/uaccess.h>. Such a copy is either performed by a generic (memcpy-like) function or by functions optimized for a specific data size (char, short, int, long); most of them are introduced in "Using the ioctl Argument" in Chapter 5, "Enhanced Char Driver Operations". 

The code for read and writein scull needs to copy a whole segment of data to or from the user address space. This capability is offered by the following kernel functions, which copy an arbitrary array of bytes and sit at the heart of every read and write implementation: 

 unsigned long copy_to_user(void *to, const void *from, 

        unsigned long count);

 unsigned long copy_from_user(void *to, const void *from, 

        unsigned long count);

Although these functions behave like normal memcpy functions, a little extra care must be used when accessing user space from kernel code. The user pages being addressed might not be currently present in memory, and the page-fault handler can put the process to sleep while the page is being transferred into place. This happens, for example, when the page must be retrieved from swap space. The net result for the driver writer is that any function that accesses user space must be reentrant and must be able to execute concurrently with other driver functions (see also "Writing Reentrant Code" in Chapter 5, "Enhanced Char Driver Operations"). That's why we use semaphores to control concurrent access. 

The role of the two functions is not limited to copying data to and from user-space: they also check whether the user space pointer is valid. If the pointer is invalid, no copy is performed; if an invalid address is encountered during the copy, on the other hand, only part of the data is copied. In both cases, the return value is the amount of memory still to be copied. The scull code looks for this error return, and returns -EFAULT to the user if it's not 0. 

The topic of user-space access and invalid user space pointers is somewhat advanced, and is discussed in "Using the ioctl Argument"" in Chapter 5, "Enhanced Char Driver Operations". However, it's worth suggesting that if you don't need to check the user-space pointer you can invoke __copy_to_user and __copy_from_user instead. This is useful, for example, if you know you already checked the argument. 

As far as the actual device methods are concerned, the task of the read method is to copy data from the device to user space (using copy_to_user), while the writemethod must copy data from user space to the device (using copy_from_user). Each reador write system call requests transfer of a specific number of bytes, but the driver is free to transfer less data -- the exact rules are slightly different for reading and writing and are described later in this chapter. 

Whatever the amount of data the methods transfer, they should in general update the file position at *offp to represent the current file position after successful completion of the system call. Most of the time the offp argument is just a pointer to filp->f_pos, but a different pointer is used in order to support the pread and pwrite system calls, which perform the equivalent of lseek and read or write in a single, atomic operation. 

Figure 3-2 represents how a typical read implementation uses its arguments. 
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Figure 3-2. The arguments to read

Both the read and writemethods return a negative value if an error occurs. A return value greater than or equal to 0 tells the calling program how many bytes have been successfully transferred. If some data is transferred correctly and then an error happens, the return value must be the count of bytes successfully transferred, and the error does not get reported until the next time the function is called. 

Although kernel functions return a negative number to signal an error, and the value of the number indicates the kind of error that occurred (as introduced in Chapter 2, "Building and Running Modules" in "Error Handling in init_module"), programs that run in user space always see -1 as the error return value. They need to access the errno variable to find out what happened. The difference in behavior is dictated by the POSIX calling standard for system calls and the advantage of not dealing with errno in the kernel. 

The read Method

The return value for read is interpreted by the calling application program as follows: 

· If the value equals the count argument passed to the read system call, the requested number of bytes has been transferred. This is the optimal case. 

· If the value is positive, but smaller than count, only part of the data has been transferred. This may happen for a number of reasons, depending on the device. Most often, the application program will retry the read. For instance, if you read using the fread function, the library function reissues the system call till completion of the requested data transfer. 

· If the value is 0, end-of-file was reached. 

· A negative value means there was an error. The value specifies what the error was, according to <linux/errno.h>. These errors look like -EINTR (interrupted system call) or -EFAULT (bad address). 

What is missing from the preceding list is the case of "there is no data, but it may arrive later." In this case, the read system call should block. We won't deal with blocking input until "Blocking I/O" in Chapter 5, "Enhanced Char Driver Operations". 

The scull code takes advantage of these rules. In particular, it takes advantage of the partial-read rule. Each invocation of scull_read deals only with a single data quantum, without implementing a loop to gather all the data; this makes the code shorter and easier to read. If the reading program really wants more data, it reiterates the call. If the standard I/O library (i.e., fread and friends) is used to read the device, the application won't even notice the quantization of the data transfer. 

If the current read position is greater than the device size, the read method of scullreturns 0 to signal that there's no data available (in other words, we're at end-of-file). This situation can happen if process A is reading the device while process B opens it for writing, thus truncating the device to a length of zero. Process A suddenly finds itself past end-of-file, and the next read call returns 0. 

Here is the code for read: 

ssize_t scull_read(struct file *filp, char *buf, size_t count,

    loff_t *f_pos)

{

 Scull_Dev *dev = filp->private_data; /* the first list item */

 Scull_Dev *dptr;

 int quantum = dev->quantum;

 int qset = dev->qset;

 int itemsize = quantum * qset; /* how many bytes in the list item */

 int item, s_pos, q_pos, rest;

 ssize_t ret = 0;

 if (down_interruptible(&dev->sem))

   return -ERESTARTSYS;

 if (*f_pos >= dev->size)

  goto out;

 if (*f_pos + count > dev->size)

  count = dev->size - *f_pos;

 /* find list item, qset index, and offset in the quantum */

 item = (long)*f_pos / itemsize;

 rest = (long)*f_pos % itemsize;

 s_pos = rest / quantum; q_pos = rest % quantum;

 /* follow the list up to the right position (defined elsewhere) */

 dptr = scull_follow(dev, item);

 if (!dptr->data)

  goto out; /* don't fill holes */

 if (!dptr->data[s_pos])

  goto out;

 /* read only up to the end of this quantum */

 if (count > quantum - q_pos)

  count = quantum - q_pos;

 if (copy_to_user(buf, dptr->data[s_pos]+q_pos, count)) {

  ret = -EFAULT;


goto out;

 }

 *f_pos += count;

 ret = count;

 out:

 up(&dev->sem);

 return ret;

}

The write Method

write, like read, can transfer less data than was requested, according to the following rules for the return value: 

· If the value equals count, the requested number of bytes has been transferred. 

· If the value is positive, but smaller than count, only part of the data has been transferred. The program will most likely retry writing the rest of the data. 

· If the value is 0, nothing was written. This result is not an error, and there is no reason to return an error code. Once again, the standard library retries the call to write. We'll examine the exact meaning of this case in "Blocking I/O" in Chapter 5, "Enhanced Char Driver Operations", where blocking write is introduced. 

· A negative value means an error occurred; like for read, valid error values are those defined in <linux/errno.h>. 

Unfortunately, there may be misbehaving programs that issue an error message and abort when a partial transfer is performed. This happens because some programmers are accustomed to seeing write calls that either fail or succeed completely, which is actually what happens most of the time and should be supported by devices as well. This limitation in the scull implementation could be fixed, but we didn't want to complicate the code more than necessary. 

The scull code for write deals with a single quantum at a time, like the read method does: 

ssize_t scull_write(struct file *filp, const char *buf, size_t count,

    loff_t *f_pos)

{

 Scull_Dev *dev = filp->private_data;

 Scull_Dev *dptr;

 int quantum = dev->quantum;

 int qset = dev->qset;

 int itemsize = quantum * qset;

 int item, s_pos, q_pos, rest;

 ssize_t ret = -ENOMEM; /* value used in "goto out" statements */

 if (down_interruptible(&dev->sem))

   return -ERESTARTSYS;

 /* find list item, qset index and offset in the quantum */

 item = (long)*f_pos / itemsize;

 rest = (long)*f_pos % itemsize;

 s_pos = rest / quantum; q_pos = rest % quantum;

 /* follow the list up to the right position */

 dptr = scull_follow(dev, item);

 if (!dptr->data) {

  dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL);

  if (!dptr->data)

   goto out;

  memset(dptr->data, 0, qset * sizeof(char *));

 }

 if (!dptr->data[s_pos]) {

  dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);

  if (!dptr->data[s_pos])

   goto out;

 }

 /* write only up to the end of this quantum */

 if (count > quantum - q_pos)

  count = quantum - q_pos;

 if (copy_from_user(dptr->data[s_pos]+q_pos, buf, count)) {

  ret = -EFAULT;


goto out;

 }

 *f_pos += count;

 ret = count;

 /* update the size */

 if (dev->size < *f_pos)

  dev-> size = *f_pos;

 out:

 up(&dev->sem);

 return ret;

}

readv and writev

Unix systems have long supported two alternative system calls named readv and writev. These "vector" versions take an array of structures, each of which contains a pointer to a buffer and a length value. A readv call would then be expected to read the indicated amount into each buffer in turn. writev, instead, would gather together the contents of each buffer and put them out as a single write operation. 

Until version 2.3.44 of the kernel, however, Linux always emulated readv and writev with multiple calls to read and write. If your driver does not supply methods to handle the vector operations, they will still be implemented that way. In many situations, however, greater efficiency is achieved by implementing readv and writev directly in the driver. 

The prototypes for the vector operations are as follows: 

 ssize_t (*readv) (struct file *filp, const struct iovec *iov, 

      unsigned long count, loff_t *ppos);

 ssize_t (*writev) (struct file *filp, const struct iovec *iov, 

      unsigned long count, loff_t *ppos);

Here, the filp and ppos arguments are the same as for read and write. The iovec structure, defined in <linux/uio.h>, looks like this: 

 struct iovec

 {

  void *iov_base;

  _&thinsp;_kernel_size_t iov_len;

 };

Each iovec describes one chunk of data to be transferred; it starts at iov_base (in user space) and is iov_len bytes long. The count parameter to the method tells how many iovec structures there are. These structures are created by the application, but the kernel copies them into kernel space before calling the driver. 

The simplest implementation of the vectored operations would be a simple loop that just passes the address and length out of each iovec to the driver's read or write function. Often, however, efficient and correct behavior requires that the driver do something smarter. For example, a writev on a tape drive should write the contents of all the iovec structures as a single record on the tape. 

Many drivers, though, will gain no benefit from implementing these methods themselves. Thus, scull omits them. The kernel will emulate them with read and write, and the end result is the same. 

Playing with the New Devices

Once you are equipped with the four methods just described, the driver can be compiled and tested; it retains any data you write to it until you overwrite it with new data. The device acts like a data buffer whose length is limited only by the amount of real RAM available. You can try using cp, dd, and input/output redirection to test the driver. 

The free command can be used to see how the amount of free memory shrinks and expands according to how much data is written into scull. 

To get more confident with reading and writing one quantum at a time, you can add a printk at an appropriate point in the driver and watch what happens while an application reads or writes large chunks of data. Alternatively, use the strace utility to monitor the system calls issued by a program, together with their return values. Tracing a cp or an ls -l > /dev/scull0 will show quantized reads and writes. Monitoring (and debugging) techniques are presented in detail in the next chapter. 

The Device Filesystem

As suggested at the beginning of the chapter, recent versions of the Linux kernel offer a special filesystem for device entry points. The filesystem has been available for a while as an unofficial patch; it was made part of the official source tree in 2.3.46. A backport to 2.2 is available as well, although not included in the official 2.2 kernels. 

Although use of the special filesystem is not widespread as we write this, the new features offer a few advantages to the device driver writer. Therefore, our version of scullexploits devfs if it is being used in the target system. The module uses kernel configuration information at compile time to know whether particular features have been enabled, and in this case we depend on CONFIG_DEVFS_FS being defined or not. 

The main advantages of devfs are as follows: 

· Device entry points in /dev are created at device initialization and removed at device removal. 

· The device driver can specify device names, ownership, and permission bits, but user-space programs can still change ownership and permission (but not the filename). 

· There is no need to allocate a major number for the device driver and deal with minor numbers. 

As a result, there is no need to run a script to create device special files when a module is loaded or unloaded, because the driver is autonomous in managing its own special files. 

To handle device creation and removal, the driver should call the following functions: 

#include <linux/devfs_fs_kernel.h>

devfs_handle_t devfs_mk_dir (devfs_handle_t dir,

  const char *name, void *info);

devfs_handle_t devfs_register (devfs_handle_t dir,

  const char *name, unsigned int flags,

  unsigned int major, unsigned int minor,

  umode_t mode, void *ops, void *info);

  void devfs_unregister (devfs_handle_t de);

The devfs implementation offers several other functions for kernel code to use. They allow creation of symbolic links, access to the internal data structures to retrieve devfs_handle_t items from inodes, and other tasks. Those other functions are not covered here because they are not very important or easily understood. The curious reader could look at the header file for further information. 

The various arguments to the register/unregister functions are as follows: 

dir 

The parent directory where the new special file should be created. Most drivers will use NULL to create special files in /dev directly. To create an owned directory, a driver should call devfs_mk_dir. 

name 

The name of the device, without the leading /dev/. The name can include slashes if you want the device to be in a subdirectory; the subdirectory is created during the registration process. Alternatively, you can specify a valid dir pointer to the hosting subdirectory. 

flags 

A bit mask of devfsflags. DEVFS_FL_DEFAULT can be a good choice, and DEVFS_FL_AUTO_DEVNUM is the flag you need for automatic assignment of major and minor numbers. The actual flags are described later. 

major 

minor 

The major and minor numbers for the device. Unused if DEVFS_FL_AUTO_DEVNUM is specified in the flags. 

mode 

Access mode of the new device. 

ops 

A pointer to the file operation structure for the device. 

info 

A default value for filp->private_data. The filesystem will initialize the pointer to this value when the device is opened. The info pointer passed to devfs_mk_dir is not used by devfs and acts as a "client data" pointer. 

de 

A "devfs entry" obtained by a previous call to devfs_register. 

The flags are used to select specific features to be enabled for the special file being created. Although the flags are briefly and clearly documented in <linux/devfs_fs_kernel.h>, it's worth introducing some of them. 

DEVFS_FL_NONE 

DEVFS_FL_DEFAULT 

The former symbol is simply 0, and is suggested for code readability. The latter macro is currently defined to DEVFS_FL_NONE, but is a good choice to be forward compatible with future implementations of the filesystem. 

DEVFS_FL_AUTO_OWNER 

The flag makes the device appear to be owned by the last uid/gid that opened it, and read/write for anybody when no process has it opened. The feature is useful for tty device files but is also interesting for device drivers to prevent concurrent access to a nonshareable device. We'll see access policy issues in Chapter 5, "Enhanced Char Driver Operations". 

DEVFS_FL_SHOW_UNREG 

DEVFS_FL_HIDE 

The former flag requests not to remove the device file from /dev when it is unregistered. The latter requests never to show it in /dev. The flags are not usually needed for normal devices. 

DEVFS_FL_AUTO_DEVNUM 

Automatically allocate a device number for this device. The number will remain associated with the device name even after the devfs entry is unregistered, so if the driver is reloaded before the system is shut down, it will receive the same major/minor pair. 

DEVFS_FL_NO_PERSISTENCE 

Don't keep track of this entry after it is removed. This flags saves some system memory after module removal, at the cost of losing persistence of device features across module unload/reload. Persistent features are access mode, file ownership, and major/minor numbers. 

It is possible to query the flags associated with a device or to change them at runtime. The following two functions perform the tasks: 

int devfs_get_flags (devfs_handle_t de, unsigned int *flags);

int devfs_set_flags (devfs_handle_t de, unsigned int flags);

Using devfs in Practice

Because devfs leads to serious user-space incompatibilities as far as device names are concerned, not all installed systems use it. Independently of how the new feature will be accepted by Linux users, it's unlikely you'll write devfs-only drivers anytime soon; thus, you'll need to add support for the "older" way of dealing with file creation and permission from user space and using major/minor numbers in kernel space. 

The code needed to implement a device driver that only runs with devfs installed is a subset of the code you need to support both environments, so we only show the dual-mode initialization. Instead of writing a specific sample driver to try out devfs, we added devfs support to the scull driver. If you load scull to a kernel that uses devfs, you'll need to directly invoke insmod instead of running the scull_load script. 

We chose to create a directory to host all scull special files because the structure of devfs is highly hierarchical and there's no reason not to adhere to this convention. Moreover, we can thus show how a directory is created and removed. 

Within scull_init, the following code deals with device creation, using a field within the device structure (called handle) to keep track of what devices have been registered: 

 /* If we have devfs, create /dev/scull to put files in there */

 scull_devfs_dir = devfs_mk_dir(NULL, "scull", NULL);

 if (!scull_devfs_dir) return -EBUSY; /* problem */

 for (i=0; i < scull_nr_devs; i++) {

  sprintf(devname, "%i", i);

  devfs_register(scull_devfs_dir, devname,

      DEVFS_FL_AUTO_DEVNUM,

      0, 0, S_IFCHR | S_IRUGO | S_IWUGO,

      &scull_fops,

      scull_devices+i);

 }

The previous code is paired by the two lines that are part of the following excerpt from scull_cleanup: 

 if (scull_devices) {

  for (i=0; i<scull_nr_devs; i++) {

   scull_trim(scull_devices+i);

   /* the following line is only used for devfs */

   devfs_unregister(scull_devices[i].handle);

  }

  kfree(scull_devices);

 }

 /* once again, only for devfs */

 devfs_unregister(scull_devfs_dir);

Part of the previous code fragments is protected by #ifdef CONFIG_DEVFS_FS. If the feature is not enabled in the current kernel, scull will revert to register_chrdev. 

The only extra task that needs to be performed in order to support both environments is dealing with initialization of filp->f_ops and filp->private_data in the open device method. The former pointer is simply not modified, since the right file operations have been specified in devfs_register. The latter will only need to be initialized by the open method if it is NULL, since it will only be NULL if devfs is not being used. 

 /*

  * If private data is not valid, we are not using devfs

  * so use the type (from minor nr.) to select a new f_op

  */

 if (!filp->private_data && type) {

  if (type > SCULL_MAX_TYPE) return -ENODEV;

  filp->f_op = scull_fop_array[type];

  return filp->f_op->open(inode, filp); /* dispatch to specific open */

 }

 /* type 0, check the device number (unless private_data valid) */

 dev = (Scull_Dev *)filp->private_data;

 if (!dev) {

  if (num >= scull_nr_devs) return -ENODEV;

  dev = &scull_devices[num];

  filp->private_data = dev; /* for other methods */

 }

Once equipped with the code shown, the scull module can be loaded to a system running devfs. It will show the following lines as output of ls -l /dev/scull: 

crw-rw-rw- 1 root  root  144,  1 Jan 1 1970 0

crw-rw-rw- 1 root  root  144,  2 Jan 1 1970 1

crw-rw-rw- 1 root  root  144,  3 Jan 1 1970 2

crw-rw-rw- 1 root  root  144,  4 Jan 1 1970 3

crw-rw-rw- 1 root  root  144,  5 Jan 1 1970 pipe0

crw-rw-rw- 1 root  root  144,  6 Jan 1 1970 pipe1

crw-rw-rw- 1 root  root  144,  7 Jan 1 1970 pipe2

crw-rw-rw- 1 root  root  144,  8 Jan 1 1970 pipe3

crw-rw-rw- 1 root  root  144, 12 Jan 1 1970 priv

crw-rw-rw- 1 root  root  144,  9 Jan 1 1970 single

crw-rw-rw- 1 root  root  144, 10 Jan 1 1970 user

crw-rw-rw- 1 root  root  144, 11 Jan 1 1970 wuser

The functionality of the various files is the same as that of the "normal" scull module, the only difference being in device pathnames: what used to be /dev/scull0 is now /dev/scull/0. 

Portability Issues and devfs

The source files of scull are somewhat complicated by the need to be able to compile and run well with Linux versions 2.0, 2.2, and 2.4. This portability requirement brings in several instances of conditional compilation based on CONFIG_DEVFS_FS. 

Fortunately, most developers agree that #ifdef constructs are basically bad when they appear in the body of function definitions (as opposed to being used in header files). Therefore, the addition of devfs brings in the needed machinery to completely avoid #ifdef in your code. We still have conditional compilation in scull because older versions of the kernel headers can't offer support for that. 

If your code is meant to only be used with version 2.4 of the kernel, you can avoid conditional compilation by calling kernel functions to initialize the driver in both ways; things are arranged so that one of the initializations will do nothing at all, while returning success. The following is an example of what initialization might look like: 

 #include <devfs_fs_kernel.h>

 int init_module()

 {

  /* request a major: does nothing if devfs is used */

  result = devfs_register_chrdev(major, "name", &fops);

  if (result < 0) return result;

  /* register using devfs: does nothing if not in use */

  devfs_register(NULL, "name", /* .... */ );

  return 0;

 }

You can resort to similar tricks in your own header files, as long as you are careful not to redefine functions that are already defined by kernel headers. Removing conditional compilation is a good thing because it improves readability of the code and reduces the amount of possible bugs by letting the compiler parse the whole input file. Whenever conditional compilation is used, there is the risk of introducing typos or other errors that can slip through unnoticed if they happen in a place that is discarded by the C preprocessor because of #ifdef. 

This is, for example, how scull.h avoids conditional compilation in the cleanup part of the program. This code is portable to all kernel versions because it doesn't depend on devfs being known to the header files: 

#ifdef CONFIG_DEVFS_FS /* only if enabled, to avoid errors in 2.0 */

#include <linux/devfs_fs_kernel.h>

#else

 typedef void * devfs_handle_t; /* avoid #ifdef inside the structure */

#endif

Nothing is defined in sysdep.h because it is very hard to implement this kind of hack generically enough to be of general use. Each driver should arrange for its own needs to avoid excessive #ifdef statements in function code. Also, we chose not to support devfs in the sample code for this book, with the exception of scull. We hope this discussion is enough to help readers exploit devfs if they want to; devfs support has been omitted from the rest of the sample files in order to keep the code simple. 

Backward Compatibility

This chapter, so far, has described the kernel programming interface for version 2.4 of the Linux kernel. Unfortunately, this interface has changed significantly over the course of kernel development. These changes represent improvements in how things are done, but, once again, they also pose a challenge for those who wish to write drivers that are compatible across multiple versions of the kernel. 

Insofar as this chapter is concerned, there are few noticeable differences between versions 2.4 and 2.2. Version 2.2, however, changed many of the prototypes of the file_operations methods from what 2.0 had; access to user space was greatly modified (and simplified) as well. The semaphore mechanism was not as well developed in Linux 2.0. And, finally, the 2.1 development series introduced the directory entry (dentry) cache. 

Changes in the File Operations Structure

A number of factors drove the changes in the file_operations methods. The longstanding 2 GB file-size limit caused problems even in the Linux 2.0 days. As a result, the 2.1 development series started using the loff_t type, a 64-bit value, to represent file positions and lengths. Large file support was not completely integrated until version 2.4 of the kernel, but much of the groundwork was done earlier and had to be accommodated by driver writers. 

Another change introduced during 2.1 development was the addition of the f_pos pointer argument to the read and write methods. This change was made to support the POSIX pread and pwrite system calls, which explicitly set the file offset where data is to be read or written. Without these system calls, threaded programs can run into race conditions when moving around in files. 

Almost all methods in Linux 2.0 received an explicit inode pointer argument. The 2.1 development series removed this parameter from several of the methods, since it was rarely needed. If you need the inode pointer, you can still retrieve it from the filp argument. 

The end result is that the prototypes of the commonly used file_operations methods looked like this in 2.0: 

int (*lseek) (struct inode *, struct file *, off_t, int); 

Note that this method is called lseek in Linux 2.0, instead of llseek. The name change was made to recognize that seeks could now happen with 64-bit offset values. 

int (*read) (struct inode *, struct file *, char *, int); 

int (*write) (struct inode *, struct file *, const char *, int); 

As mentioned, these functions in Linux 2.0 had the inode pointer as an argument, and lacked the position argument. 

void (*release) (struct inode *, struct file *); 
In the 2.0 kernel, the release method could not fail, and thus returned void. 

There have been many other changes to the file_operations structure; we will cover them in the following chapters as we get to them. Meanwhile, it is worth a moment to look at how portable code can be written that accounts for the changes we have seen so far. The changes in these methods are large, and there is no simple, elegant way to cover them over. 

The way the sample code handles these changes is to define a set of small wrapper functions that "translate" from the old API to the new. These wrappers are only used when compiling under 2.0 headers, and must be substituted for the "real" device methods within the file_operations structure. This is the code implementing the wrappers for the sculldriver: 

/*

 * The following wrappers are meant to make things work with 2.0 kernels

 */

#ifdef LINUX_20

int scull_lseek_20(struct inode *ino, struct file *f,

    off_t offset, int whence)

{

 return (int)scull_llseek(f, offset, whence);

}

int scull_read_20(struct inode *ino, struct file *f, char *buf, 

   int count)

{

 return (int)scull_read(f, buf, count, &f->f_pos);

}

int scull_write_20(struct inode *ino, struct file *f, const char *b, 

   int c)

{

 return (int)scull_write(f, b, c, &f->f_pos);

}

void scull_release_20(struct inode *ino, struct file *f)

{

 scull_release(ino, f);

}

/* Redefine "real" names to the 2.0 ones */

#define scull_llseek scull_lseek_20

#define scull_read scull_read_20

#define scull_write scull_write_20

#define scull_release scull_release_20

#define llseek lseek

#endif /* LINUX_20 */

Redefining names in this manner can also account for structure members whose names have changed over time (such as the change from lseek to llseek). 

Needless to say, this sort of redefinition of the names should be done with care; these lines should appear before the definition of the file_operations structure, but after any other use of those names. 

Two other incompatibilities are related to the file_operations structure. One is that the flush method was added during the 2.1 development cycle. Driver writers almost never need to worry about this method, but its presence in the middle of the structure can still create problems. The best way to avoid dealing with the flush method is to use the tagged initialization syntax, as we did in all the sample source files. 

The other difference is in the way an inode pointer is retrieved from a filp pointer. Whereas modern kernels use a dentry (directory entry) data structure, version 2.0 had no such structure. Therefore, sysdep.h defines a macro that should be used to portably access an inode from a filp: 

#ifdef LINUX_20

# define INODE_FROM_F(filp) ((filp)->f_inode)

#else

# define INODE_FROM_F(filp) ((filp)->f_dentry->d_inode)

#endif

The Module Usage Count

In 2.2 and earlier kernels, the Linux kernel did not offer any assistance to modules in maintaining the usage count. Modules had to do that work themselves. This approach was error prone and required the duplication of a lot of work. It also encouraged race conditions. The new method is thus a definite improvement. 

Code that is written to be portable, however, must be prepared to deal with the older way of doing things. That means that the usage count must still be incremented when a new reference is made to the module, and decremented when that reference goes away. Portable code must also work around the fact that the owner field did not exist in the file_operations structure in earlier kernels. The easiest way to handle that is to use SET_MODULE_OWNER, rather than working with the owner field directly. In sysdep.h, we provide a null SET_FILE_OWNER for kernels that do not have this facility. 

Changes in Semaphore Support

Semaphore support was less developed in the 2.0 kernel; support for SMP systems in general was primitive at that time. Drivers written for only that kernel version may not need to use semaphores at all, since only one CPU was allowed to be running kernel code at that time. Nonetheless, there may still be a need for semaphores, and it does not hurt to have the full protection needed by later kernel versions. 

Most of the semaphore functions covered in this chapter existed in the 2.0 kernel. The one exception is sema_init; in version 2.0, programmers had to initialize semaphores manually. The sysdep.h header file handles this problem by defining a version of sema_init when compiled under the 2.0 kernel: 

#ifdef LINUX_20

# ifdef MUTEX_LOCKED /* Only if semaphore.h included */

  extern inline void sema_init (struct semaphore *sem, int val)

  {

   sem->count = val;

   sem->waking = sem->lock = 0;

   sem->wait = NULL;

  }

# endif

#endif /* LINUX_20 */

Changes in Access to User Space

Finally, access to user space changed completely at the beginning of the 2.1 development series. The new interface has a better design and makes much better use of the hardware in ensuring safe access to user-space memory. But, of course, the interface is different. The 2.0 memory-access functions were as follows: 

 void memcpy_fromfs(void *to, const void *from, unsigned long count);

 void memcpy_tofs(void *to, const void *from, unsigned long count);

The names of these functions come from the historical use of the FS segment register on the i386. Note that there is no return value from these functions; if the user supplies an invalid address, the data copy will silently fail. sysdep.h hides the renaming and allows you to portably call copy_to_user and copy_from_user. 

Quick Reference

This chapter introduced the following symbols and header files. The list of the fields in struct file_operations and struct file is not repeated here. 

#include <linux/fs.h> 

The "file system" header is the header required for writing device drivers. All the important functions are declared in here. 

int register_chrdev(unsigned int major, const char *name, struct file_operations *fops); 

Registers a character device driver. If the major number is not 0, it is used unchanged; if the number is 0, then a dynamic number is assigned for this device. 

int unregister_chrdev(unsigned int major, const char *name); 

Unregisters the driver at unload time. Both major and the name string must contain the same values that were used to register the driver. 

kdev_t inode->i_rdev; 

The device "number" for the current device is accessible from the inode structure. 

int MAJOR(kdev_t dev); 

int MINOR(kdev_t dev); 

These macros extract the major and minor numbers from a device item. 

kdev_t MKDEV(int major, int minor); 

This macro builds a kdev_t data item from the major and minor numbers. 

SET_MODULE_OWNER(struct file_operations *fops) 

This macro sets the owner field in the given file_operations structure. 

#include <asm/semaphore.h> 

Defines functions and types for the use of semaphores. 

void sema_init (struct semaphore *sem, int val); 

Initializes a semaphore to a known value. Mutual exclusion semaphores are usually initialized to a value of 1. 

int down_interruptible (struct semaphore *sem); 

void up (struct semaphore *sem); 

Obtains a semaphore (sleeping, if necessary) and releases it, respectively. 

#include <asm/segment.h> 

#include <asm/uaccess.h> 

segment.h defines functions related to cross-space copying in all kernels up to and including 2.0. The name was changed to uaccess.h in the 2.1 development series. 

unsigned long __copy_from_user (void *to, const void *from, unsigned long count); 

unsigned long __copy_to_user (void *to, const void *from, unsigned long count); 

Copy data between user space and kernel space. 

void memcpy_fromfs(void *to, const void *from, unsigned long count); 

void memcpy_tofs(void *to, const void *from, unsigned long count); 

These functions were used to copy an array of bytes from user space to kernel space and vice versa in version 2.0 of the kernel. 

#include <linux/devfs_fs_kernel.h> 

devfs_handle_t devfs_mk_dir (devfs_handle_t dir, const char *name, void *info); 

devfs_handle_t devfs_register (devfs_handle_t dir, const char *name, unsigned int flags, 

unsigned int major, unsigned int minor, umode_t mode, void *ops, void *info); 

void devfs_unregister (devfs_handle_t de); 

These are the basic functions for registering devices with the device filesystem (devfs). 

