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Abstract—Over the past decade, the problem of fair bandwidth allocation among contending traffic flows on a link has been

extensively researched. However, as these flows traverse a computer network, they share different kinds of resources (e.g., links,

buffers, router CPU). The ultimate goal should hence be overall fairness in the allocation of multiple resources rather than a specific

resource. Moreover, conventional resource scheduling algorithms depend strongly upon the assumption of prior knowledge of network

parameters and cannot handle variations or lack of information about these parameters. In this paper, we present a novel scheduler

called the Composite Bandwidth and CPU Scheduler (CBCS), which jointly allocates the fair share of the link bandwidth as well as

processing resource to all competing flows. CBCS also uses a simple and adaptive online prediction scheme for reliably estimating the

processing times of the incoming data packets. Analytically, we prove that CBCS is efficient, with a per-packet work complexity of Oð1Þ.
Finally, we present simulation results and experimental outcomes from a real-world implementation of CBCS on an Intel IXP 2400

network processor. Our results highlight the improved performance achieved by CBCS and demonstrate the ease with which it can be

implemented on off-the-shelf hardware.

Index Terms—Packet-switched networks, distributed applications, microprocessor/microcomputer applications, scheduling.

Ç

1 INTRODUCTION

FAIR allocation of shared network resources among
multiple users is an intuitively desirable property. Strict

fairness in traffic scheduling improves the isolation between
flows, offers a more predictable performance, and elim-
inates bottlenecks. Fair resource allocation also plays an
important part in Quality of Service (QoS) mechanisms that
ensure end-to-end performance guarantees such as mini-
mum bandwidth and delay bounds.

The link bandwidth, however, is not the only resource
that is shared by the traffic flows as they traverse the
network. A router’s processor is often also a critical resource
to which all competing flows should have fair access. For
each incoming packet, the router has to perform several
activities which may include computing the checksum,
performing a forwarding table lookup, processing variable
length options, etc. Given the fact that processing require-
ments of different packets vary widely, the issue of fairness
in the allocation of the processing resources gains signifi-
cance. Besides the fact that packet lengths can vary widely,
there is also a wide variation in the ratio of a packet’s
demand for bandwidth and its demand for processing
cycles. This is primarily due to the different kinds of control

data carried by individual packets, for example, in the
optional headers. Thus, one cannot achieve overall fairness
merely by fair sharing of the link bandwidth alone or merely
through fair allocation of the processing resource alone.
Moreover, the allocation of bandwidth and CPU resources
are interdependent and the fair allocation of one resource
does not necessarily entail fairness in the other resource
allocation. Therefore, for better maintenance of QoS guar-
antees and overall fairness in resource allocations for the
contending flows, it is vital that the processor and
bandwidth scheduling schemes should be integrated. This
is particularly important, given the extensive packet proces-
sing capabilities of today’s network processors, e.g., Intel
IXP2400 [1].

1.1 Related Work

Generalized Processor Sharing (GPS) [2] is an ideal but un-
implementable scheduling discipline for fair allocation of a
single resource. During the past several years, a variety of
algorithms have been proposed for achieving fair allocation
of the link bandwidth among multiple flows that share the
link [13], [3]. However, most of these schemes cannot be
readily adapted for processor scheduling because they
require precise knowledge of the execution times for the
incoming packets at the time of their arrival in the node.
Start-Time Fair Queuing (SFQ) [4], a bandwidth scheduling
algorithm that does not require knowledge of the packet
length prior to making a scheduling decision, could be a
suitable option for scheduling computational resources.
However, the worst-case delay under SFQ increases with
the number of flows. Further, it tends to favor flows that
have a higher average ratio of processing time per packet to
reserved processing rate [5]. Over the years, several
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researchers working in the field of computer architecture
have proposed schemes for scheduling access to the CPU
processing cycles [6], [7], but most of these proposals focus
on CPU scheduling for end systems and work at the task
level, not at the packet level.

Pappu and Wolf [5] presented a processor scheduling
algorithm for programmable routers called Estimation-
based Fair Queuing (EFQ) that estimated the execution
times of various applications on packets of given lengths
offline and then scheduled the processing resources based
on the estimations. Fixed values of the estimation para-
meters measured offline may not always produce good
estimations due to variation in server load and operating
system scheduling. Galtier et al. [8] proposed a scheme to
predict the CPU requirements of executing a specific code
on a variety of platforms. However, the scheme seems too
complicated to be implemented with programmable routers.

A few scheduling schemes have also been proposed for
multiprocessors, but these are mostly simple static policies
[9], [10]. Shi et al. [11] describe the design and implementa-
tion of the Dynamic Window-Constrained Scheduling
(DWCS) algorithm for scheduling packets on network
processors. However, DWCS was developed only for
bandwidth scheduling. Researchers in [12] developed
another scheduler called the Packet Timed Token Service
Discipline (PTTSD), which allows the coexistence of
guaranteed service flows such as real-time connections
and classic best-effort flows and schedules bandwidth
resources among the competing flows.

Most existing scheduling disciplines can be broadly
classified into the following categories:

. Sorted Priority Schedulers: These schedulers main-
tain a global variable known as virtual time. A
timestamp computed as a function of this variable is
associated with each packet in the system. Packets
are scheduled in the increasing order of these
timestamps. Examples include WFQ [13], Self-
Clocked Fair Queuing (SCFQ) [14], and SFQ [4].
The main disadvantage of these schemes is that the
per-packet work complexity is a function of the total
number of flows being served by the scheduler,
which makes them hard to implement in high-speed
hardware.

. Round Robin Schedulers: In these schemes (i.e.,
Deficit Round Robin (DRR) [15], Elastic Round
Robin (ERR) [16], etc.), on the other hand, the
scheduler provides service opportunities to the
backlogged flows in a round-robin order and, during
each service opportunity, the intent is to provide the
flow with an amount of service proportional to its
fair share of the resource. Since these schemes do not
require any sorting among the packets, their
implementation complexity is Oð1Þ, making them
attractive for implementation in high-speed routers.

All the scheduling schemes discussed above are designed to
schedule only a single resource, i.e., either bandwidth or
processing resource. Although the determination of execu-
tion times for packets in advance on a programmable node
has been identified as a major obstacle in managing
processing resources [5], [8], [17], none of the previous
studies provided a generalized online solution to the
problem.

1.2 Contributions

The main contributions of this paper can be summarized as
follows:

. We present a composite bandwidth and processor
scheduler called Composite Bandwidth and CPU
Scheduler (CBCS), which can schedule multiple
resources adaptively, fairly, and efficiently among
all the competing flows. Our scheduler employs a
simple and adaptive online prediction scheme called
modified SES for determining the packet execution
times. CBCS has a per-packet work complexity of
Oð1Þ, making it attractive for implementation in
high-speed routers.

. This paper also analytically derives the relative
fairness bound (FB) of CBCS, a popular metric for
evaluating the fairness properties. Finally, the worst-
case work complexity, a metric that highlights the
efficiency of CBCS, is evaluated. Our analysis shows
that CBCS has better fairness characteristics and a
significantly lower latency bound in comparison to
separate CPU and bandwidth schedulers. Simula-
tion-based evaluations to confirm our analytical
results are also presented.

. The FB is a fairness measure which highlights the
worst-case performance of the scheduler. It, how-
ever, does not accurately capture the behavior of the
scheduler under normal circumstances. We use a
metric called Gini Index, borrowed from the field of
economics, to comparatively judge the instantaneous
fairness achieved by CBCS. Simulation results to
demonstrate the improved instantaneous fairness of
CBCS are also presented.

. With the rapid increase in the capacity of transmis-
sion links, the ease with which a scheduler can be
implemented in real hardware systems is extremely
crucial. We demonstrate that our scheduler can be
easily implemented on an off-the-shelf network
processor such as the Intel IXP 2400 board. The
extensive experimental results from the IXP2400
implementation highlight the effectiveness and high
performance of this algorithm in a real-world
system. To the best of our knowledge, this is one
of the first public domain implementations of such a
system and we expect that this will generate a lot of
interest in the research community and open
avenues for future research.

1.3 Organization

The rest of the document is organized as follows: Section 2
briefly describes the CBCS scheduling algorithm and also
discusses the prediction scheme used for estimating the
processing duration of the packets. Section 3 presents
analytical results on the efficiency and fairness character-
istics of CBCS. Simulation results demonstrating the
improved performance of PCFQ over a system consisting
of separate bandwidth and CPU schedulers are presented in
Section 4. Section 5 discusses the details of the implementa-
tion of CBCS on the Intel IXP2400 network processor and
outlines the experimental results. Finally, Section 6 con-
cludes the paper.
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2 CBCS—COMPOSITE BANDWIDTH AND CPU
SCHEDULING ALGORITHM

In this section, we present a brief overview of the CBCS
scheduler and prediction technique used to estimate the
packet processing duration. A more detailed description
can be found in [18], [19], and [20].

2.1 Online Prediction Process

Since the processing requirement of each packet is not
known a priori, the CBCS scheduler needs to estimate the
processing duration for each arriving packet. We have
investigated several smoothing methods and their suitabil-
ity for predicting the processing requirements of the
packets. A detailed analysis, investigations, and a compara-
tive performance analysis of the alternatives are discussed
in [20]. Our investigations show that the Single Exponential
Smoothing (SES) technique is well-suited to estimate the
execution times of the packets. SES is computationally
simple and an attractive method of forecasting. Researchers
have used this method to forecast the display cycle time
(which includes decompression time plus rendering time)
for compressed video data packets [21]. SES uses the
following equation to calculate a new predicted value:

Ftþ1 ¼ �Xt þ ð1� �ÞFt; where 0 � � � 1; ð1Þ

where Ft and Ftþ1 are the predicted value at tth and
ðtþ 1Þ periods, respectively. Xt is the actual duration
required to process the process the packet that arrived at
time t and � is the SES coefficient which determines the
relative weight allocated to the history and the current
estimated sample.

Most of the packets that are processed by today’s
routers can be broadly classified into two categories based
on their processing needs: 1) header processing and
2) payload processing. A header processing application
(such as IP forwarding, transport layer classification, or
QoS routing) only requires read and write operations in
the header of the packet and, so, the processing complexity
is, in general, independent of the size of the packets. In
contrast, a payload processing application (such as IPSec
Encryption, packet compression and packet content trans-
coding (e.g., image format transcoding), or aggregation of
sensor data, etc.) involves read and write operations on all
the data in the packet, in particular, the payload of the
packet, and, therefore, the processing complexity strongly
correlates to the packet size [5]. In order to account for the
correlation between the processing costs and packet sizes,
we define a parameter called the Scaling Factor (SF) as

SF ¼ 1 for header processing packets and Ltþ1

Lt
for payload

processing packets.

Here, Lt; Ltþ1 ¼ Length of the packet arriving at time t
and ðtþ 1Þ, respectively.

The scaling factor is incorporated in the SES estimation
as follows:

Ftþ1 ¼ SFf�Xt þ ð1� �ÞFtg; where 0 � � � 1: ð2Þ

2.2 Overview of the CBCS Algorithm

We first begin by briefly describing the system model used
in our work. As shown in Fig. 1a, a set of N flows share a
processor and a link. Packets from each flow are first
processed by the processor and then transmitted onto the
output link. The joint allocation of the processing and
bandwidth resource is accomplished by the composite
scheduler which selects a packet from the input buffers
and passes it onto the CPU for processing. No scheduling
action takes place after the processing; the packets
processed by the CPU are stored in the buffer between
the processor and the link and are transmitted in a first-
come-first serve order. The CBCS scheduler is based on the
principles used in DRR [15]. Further, contrary to the single
resource schedulers, CBCS is designed to schedule both
bandwidth and CPU resources adaptively, fairly, and
efficiently among all the competing flows. It succeeds in
eliminating the unfairness of pure packet-based round-
robin by maintaining a Credit Counter to measure the past
unfairness. Credit Counter is similar to the variables Deficit

counter and Surplus count used by single resource schedulers
such as DRR [15] and ERR [16], respectively. All backlogged
flows are stored in a linked list and the flows are served in a
round-robin order by the CBCS scheduler. The algorithm
uses the following parameters and equations:

. Quantum: A variable that represents a time slice
used to serve packets from each flow queue, which
includes both CPU processing time and network
transmission time (in msec). Let QðrÞ denote the
quantum in round r.

. CC½i�: Credit Counter, a state variable that repre-
sents a time slice for which flow i deserves to be
served within a specific round of scheduling (in
msec). Let CCr½i�ðrÞ represent the Credit Counter for
flow i in round r.

. BW : Bandwidth of the transmission link in Mbps.

. EPk
i : Estimated processing cost of packet k of flow i

in seconds.
. Lki : Length of packet k of flow i in bits.
. �i: Resize factor of the packets in flow i.
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Fig. 1. System model for CBCS and separate processor and BW scheduler. (a) CBCS. (b) Separate processor and BW scheduler.



. cULt , cLLt : Upper and lower limit (respectively) of the
total CPU queue in terms of the CPU processing time
requirement for all the packets in all the flows.

. Ptcki : The combined processing and transmission
cost for the kth packet of flow i.

. PtcMax: The maximum allowable time slice that a
packet requires to cover both CPU processing and
network transmission among all flows (total cost).

Therefore,

Ptcki ¼
1;000 � �i � Lki

BW
þ EPk

i : ð3Þ

On receiving a new packet, the scheduler examines the
header to determine the flow-id, calculates the CPU
processing time using the online prediction scheme dis-
cussed earlier and the resize factor, and then stores the
packet in the corresponding flow queue. The CBCS
scheduler continues to monitor the queue length for all
individual flows in terms of the CPU time requirement and
stops accepting packets from a flow if its queue length
becomes greater than cULt½i� . In this case, the scheduler
continues to refuse new packets from flow i until its queue
length becomes smaller than cLLt½i� .

Upon initialization, the Quantum is set to PtcMax and the
Credit Counter ðCC½i�Þ for all flows are set to zero. The
scheduler continues to serve all nonempty queues within
each round of processing. When it starts to serve a queue
within a round, the Credit Counter is set toQuantumplus the
Credit Counter of the previous round. The scheduler then
dequeues a packet from the head of the queue and calculates
the Ptcki of the packet according to the (3). It sets the CC½i� to
ðCC½i� � Ptcki Þ and hands the packet to the processor Handler
object for execution. The packet is sent to its next destination
after processing. The scheduler stops serving a queue once
the queue is empty or the credit counter becomes zero or
negative. It may be noted that the CC½i� for a nonactive flow
(i.e., a flow having no packets in the queue) is reset to zero.

It should be mentioned that CBCS can be easily adapted

for scheduling a guaranteed rate connection by assigning

weight to each flow. Let �ic and �ib be the weights for CPU

and bandwidth for flow i. If ric and rib are the CPU and

bandwidth reservation for flow i, respectively, and rmc and

rmb are the minimum CPU and bandwidth reservation

among all flows, respectively, the weights are assigned as

below: �ic ¼
ric
rmc

and �ib ¼
ri
b

rm
b

. The weighted version of CBCS

is exactly similar to the CBCS algorithm described in the

preceding section. The only difference is in the calculation

of the Quantum. If wi is the summation of the weights (both

CPU and bandwidth) of flow i and wm is the smallest

summation of the weights among all flows, the Quantum of

each flow is calculated as wi

wm � PtcMax.

3 ANALYTICAL RESULTS

In this section, we analytically derive the work complexity
and fairness properties of CBCS. We also compare the
behavior of CBCS to a typical implementation found in most
existing routers today, wherein separate schedulers are
responsible for the scheduling bandwidth and the CPU. The

exact scheduling algorithm used in each scheduler can be
chosen from the host of available scheduling disciplines. In
our comparisons, we pick DRR [15], the most popular round
robin scheduler, as a representative example. Note that DRR
cannot be easily adapted to schedule the processing
resource since it requires knowledge of the processing
duration of each packet. However, for this comparison, we
assume that the exact execution durations for each packet
are precisely available. The system model for such a CPU
and bandwidth scheduler is illustrated in Fig. 1b.

3.1 Work Complexity

The work complexity of a scheduler is defined as the order
of time complexity with respect to enqueuing and then
dequeuing a packet for transmission.

Theorem 1. The worst-case work complexity of the CBCS
scheduler is Oð1Þ.

Proof. The enqueue operation consists of determining the
flow at which the packet arrives and adding the flow to
the linked list if it is not already in the list. Both of these
operations are Oð1Þ. The dequeue procedure involves
determining the next flow to be served, calculating the
credit counter, and removing the flow from the active
list. All of these can be done in constant time, so we can
say that dequeue operation is of time complexity Oð1Þ.
As the complexity of both the enqueuing and dequeuing
tasks is Oð1Þ, it follows that the work complexity of the
CBCS scheduler is Oð1Þ. tu

3.2 Fairness Bound

In our fairness analysis, we use the popular metric, Relative
Fairness Bound (RFB), first proposed in [14]. The RFB is
defined as the maximum difference in the service received
by any two flows over all possible intervals of time. The
total resource consumed by a flow, i.e., the sum of the
processing and bandwidth resources, is used as the basis for
measuring fairness. We first introduce a few notations and
definitions which will be used in the rest of the analysis. Let
us assume Pcciðt2 � t1Þ and Pbciðt2 � t1Þ are the CPU and
transmission time consumed by the packets in flow i within
a time period of (t2 � t1), respectively, and PtcMax, PtcMax

i ,
and PtcMax

j are the maximum total cost (in terms of ms) that
a packet (among all flows, within ith and jth flow,
respectively) requires to cover both CPU processing and
network transmission.

Definition 1. A flow is backlogged during the time interval
ðt2 � t1Þ if the queue for the flow is never empty during the
interval.

Definition 2. Using the notation above, for any period of time
interval ðt2 � t1Þ, the total resource allocated to flow i is
given by

PtciðrÞ ¼ Pcciðt2 � t1Þ þ Pbciðt2 � t1Þ:

Definition 3. Let Riðt1; t2Þ be the total resource, measured in
units of time, received by flow i during the time interval
between t1 and t2. For an interval ðt1; t2Þ, the Relative
Fairness, RF ðt1; t2Þ, is defined as the maximum value of
jRiðt1; t2Þ �Rjðt1; t2Þj over all pairs of flows i and j that are
active during this interval. The Relative Fairness Bound (RFB)
is defined as the maximum of RF ðt1; t2Þ over all possible time
intervals ðt1; t2Þ.
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To evaluate the RFB for the CBCS scheduler, we first
present the following lemma which determines the upper
and lower bounds for the credit counter:

Lemma 1. For any flow i and round r,

� ðPtcmaxi ðrÞ � �Þ � CC½i�ðrÞ � QðrÞ: ð4Þ

Proof. As was described earlier, resource is allocated to
flows as long as the credit counter (which is allocated
resource � used resource) is � 0, and the credit counter
is calculated after each time a flow is served, so the new
value of CC½i�ðrÞwould be based on the present resource
usage. For the worst case, we assume the value of the
credit counter is slightly more than zero in the case when
the lower bound is � � PtciðrÞ. If the packet’s total cost
(processing and transmission) is highest among all the
packets within the flow, the credit counter could be
� � Ptcmaxi ðrÞ. Here, � is a very small amount. If the flow
becomes empty, then the credit counter is reset to 0. tu
Next, we derive the bounds on the service received by

any flow during n consecutive rounds of execution.

Theorem 2. For n consecutive rounds starting from k, during
which flow i was active, the bounds on the total resources
allocated to flow i are given by

Xkþn

r¼k
PtciðrÞ � Ptcmaxi � RiðrÞ �

Xkþn

r¼k
PiðrÞ þ Ptcmaxi :

Proof. Our approach here is similar to the one used in [22].
Let us assume that AR½i�ðrÞ and UR½i�ðrÞ represent the
allocated and used resource, respectively, for flow i in
round r. Hence,

AR½i�ðrÞ ¼ QðrÞ þ CC½i�ðrÞ; ð5Þ

CC½i�ðrþ 1Þ ¼ AR½i�ðrÞ � UR½i�ðrÞ: ð6Þ

From (6), we have

UR½i�ðrÞ ¼ AR½i�ðrÞ � CC½i�ðrþ 1Þ; ð7Þ

UR½i�ðrÞ ¼ QðrÞ þ CC½i�ðrÞ � CC½i�ðrþ 1Þ: ð8Þ

The maximum value of the quantum should be the
maximum resource that could be required by any packet
of any flow. Summing the LHS in (8) for r ¼ k to
r ¼ kþ n� 1, we get RiðrÞ, the total amount of combined
resource (both CPU and BW, measured in units of time)
by flow i during the n consecutive rounds under
consideration. Equating the summation for r ¼ k to
r ¼ kþ n� 1, we get

URn
i ¼

Xkþn�1

r¼k
QðrÞ þ CC½i�ðkÞ � CC½i�ðK þ nÞ: ð9Þ

Using Lemma 1, we prove the theorem. tu
We now present a lemma which allows us to pick

specific time intervals for evaluating the RFB.

Lemma 2.

RFB ¼ max
t1;t22Ts

RF ðt1; t2Þ:

Proof. Here, Ts is the set of all time instants at which the
scheduler ends serving one flow and begins serving
another, and T is the set of all time instants during an
execution of the CBCS algorithm. We could prove the
lemma if, for any t1, t2 2 T , there is t01, t02 2 Ts, such that
RF ðt01; t02Þ � RF ðt1; t2Þ.

If there are two active flows i and j during the
interval between t1 and t2, where t1, t2 2 T , let us
assume that, during this interval, flow i got more
service than flow j. By appropriately choosing t01 as the
time instant at either the begining or the end of the
service opportunity given to a flow at time t1, one may
verify that RF ðt01; t2Þ � RF ðt1; t2Þ. Similarly, t02 could be
chosen as either the begining or the ending instant of
the service opportunity given to a flow at t2 so that
RF ðt01; t02Þ � RF ðt1; t2Þ. tu

Theorem 3. For any execution of the CBCS discipline,
RFB � 3Ptcmax.

Proof. Our approach is similar to that used in [22]. Let us
consider two flows i and j that are active in the time
interval between t1 and t2. The CBCS algorithm states
that, after any flow receives service, it is added to the tail
end of the ActiveList. So, after flow i is served, the
scheduler serves flow j before flow i receives the service.
Thus, in between two consecutive service opportunities
given to flow i, flow j receives exactly one service
opportunity. If ni and nj denote the total number of
rounds received by flow i and j, respectively, in the time
interval ðt1; t2Þ, then jni � njj � 1.

Let rðtÞ denote the round in progress at time instant t.
Note that the time instant t1 may be such that the service
opportunity received by one of the two flows in
round rðt1Þ may not be a part of interval ðt1; t2Þ. Thus,
the first time that the scheduler visits this flow in the
interval under consideration would be in the round
following rðt1Þ. Consequently, if ri and rj denote the
rounds in which flows i and j receive service for the first
time in the interval ðt1; t2Þ, respectively, then jri � rjj � 1.
Let us assume that, within the interval ðt1; t2Þ, flow i
starts receiving service before flow j. Thus,

rj � ri þ 1; ni � nj þ 1:

From Theorem 2, for flow i,

Riðt1; t2Þ �
Xkþn

r¼k
QðrÞ þ Ptcmaxi ; ð10Þ

Xkþn

r¼k
QðrÞ � Ptcmaxj � Rjðt1; t2Þ: ð11Þ

Combining (10) and (11) and using (10), we get

Riðt1; t2Þ �Rjðt1; t2Þ � Ptcmaxi

þ Ptcmaxj þ
Xriþni

k¼ri
QðkÞ �

Xrjþnj

k¼rj
QðkÞ:

ð12Þ

Let us consider the quantity G given by

G ¼
Xriþni

k¼ri
QðkÞ �

Xrjþnj

k¼rj
QðkÞ: ð13Þ
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We now compute G for each of the four possible cases.

Case 1 ðri ¼ rj; ni ¼ njÞ: From (13), we have

G ¼
Xriþni

k¼ri
QðkÞ �

Xriþni

k¼ri
QðkÞ

) G ¼ 0:

ð14Þ

Case 2 (ri ¼ rj; ni ¼ nj þ 1): From (13), we have

G ¼
Xriþni

k¼ri
P tcmaxðkÞ �

Xriþni�1

k¼ri
P tcmaxðkÞ

) G ¼ Qðri þ niÞ
) G ¼ Ptcmaxðri þ niÞ:

ð15Þ

Case 3 (ri ¼ rj � 1; ni ¼ nj):

G ¼
Xriþni

k¼ri
P tcmaxðkÞ �

Xriþ1þni

k¼riþ1

PtcmaxðkÞ

) G ¼ QðriÞ �Qðri þ ni þ 1Þ
) G ¼ PtcmaxðriÞ � Ptcmaxðri þ ni þ 1Þ:

ð16Þ

Case 4 (ri ¼ rj � 1; ni ¼ nj þ 1):

G ¼
Xriþni

k¼ri
P tcmaxðkÞ �

Xriþni

k¼riþ1

PtcmaxðkÞ ) G ¼ QðriÞ

) G ¼ PtcmaxðriÞ:

For all the above cases, G � Ptcmax. Substituting the

value of G in (12), we can conclude that

RF � Ptcmaxi þ Ptcmaxj þ Ptcmax:

In the worst case, Ptcmaxi ¼ Ptcmaxj ¼ Ptcmax. This proves

the theorem. tu
We now evaluate the RFB for a system consisting of two

concatenated schedulers, one responsible for the CPU

scheduling and other for the bandwidth, as illustrated in

Fig. 1b. For a fair comparison, we pick DRR [15], a popular

Oð1Þ scheduler. Let RFBsep and RFBcbcs refer to the RFB for

a system consisting of concatenated DRR schedulers and

the CBCS scheduler, respectively.

Theorem 4. RFBsep � RFBcbcs.

Proof. From Theorem 3, we see that, for CBCS, RFBcbcs �
3Ptcmax: Now, if the CPU and bandwidth were sched-

uled separately, the Relative Fairness Bound would be

RFBsep � 3ðPtcmaxc þ Ptcmaxb Þ, where Ptcmaxc and Ptcmaxb

are the maximum processing and transmission cost,

respectively, for a single resource DRR scheduler. In the

worst-case scenario, a packet with the highest processing

cost would also require the longest transmission time,

resulting in a situation where RFBcbcs ¼ RFBsep. How-

ever, in most situations, these two packets will actually

be different. In these situations, Ptcmax � 3ðPtcmaxc þ
Ptcmaxb Þ and, thus, RFBcbcs � RFBsep. tu

4 SIMULATION RESULTS

In this section, we present simulation results on the delay

characteristics and the fairness properties of the CBCS

scheduler. The simulations were performed using the ns-2

network simulator [23] on a 1.8-GHz Pentium 4 PC with

384 MB memory running the Redhat 7.2 Linux operating

system. Our simulation model consists of 30 UDP flows

sharing a single processor and a link. The simulation settings

of the individual flows are given in Table 1. The output link

capacity was set to 10 Mbps. The simulations were run for

300 seconds and samples were collected at 3 second intervals.

The packet generation rates for all the flows were adjusted

such that the cumulative demand for the CPU and bandwidth

resources were 97 percent and 96 percent, respectively. This

ensures that the measured delays reflect the performance of

theschedulerandarenotaffectedbylarge queuingdelays.We

compare the performance of CBCS with an implementation

consisting of separate DRR schedulers for CPU and band-

width scheduling. We assume that the DRR CPU scheduler

uses the same online prediction scheme SES, used by CBCS for

estimating the processing duration of each packet.

4.1 Delay Measurement

Table 2 shows the maximum delay, average delay, and the

standard deviation of the delays for all three type of flows

using CBCS and separate DRR schedulers. It also shows the

performance improvement achieved using CBCS.

4.2 Packet Loss

We evaluated the packet loss characteristics of CBCS by

simulating a highly congested network where the CPU and

bandwidth requirements are greater than their respective

capacities. The comparison of the observed packet loss in

CBCS to that with separate DRR schedulers for bandwidth

and CPU is shown in Table 3 (due to space limitation, we

only show sample results for five flows). With DRR, a

significant number of packets from the RC2 encryption

flows (flows 21 to 30) were dropped after being processed,

thus wasting the consumed CPU resources. RC2 encryption

requires low CPU cycles but higher bandwidth since, after

being encrypted, the packets become bigger. When separate

DRR schedulers are used, the CPU scheduler processes

a large number of packets and does achieve fairness.

However, the high bandwidth demand overloads the

bandwidth scheduler, which results in a large number of

packets being dropped for the RC2 encryption flows.
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4.3 Fairness Measurements

We measured the fairness under a highly congested scenario
where the packet generation rates for all the flows were
adjusted such that all flows at the scheduler were backlogged
for the entire simulation period. We found that, with CBCS,
the total allocation of resources for each flow remained more
or less constant at any time for all the flows. Fig. 2a shows a
snapshot of the actual CPU allocations and the corresponding
demanded bandwidth allocations per flow measured at the
300th sec using CBCS. On the other hand, Fig. 3a shows the
actual CPU and bandwidth allocations per flow measured at
the 300th secs using CBCS. Since the CBCS scheduler
considers both the CPU and bandwidth resource requirement
while serving packets from a flow, this figure shows that the
demanded BW requirements for each flow is equal to actual
BW allocation for the same flow. Also, this figure shows that
CBCS maintained perfect fairness by keeping the total
resource allocations for each flow more or less constant. The
scheduler allocated more CPU for flows 1 to 10 and more
bandwidth for flows 11 to 30. The total CPU utilization was
100 percent, the demanded bandwidth utilization was
100 percent, and the actual bandwidth utilization was
99 percent using CBCS. Fig. 2b shows the actual CPU
allocations and corresponding demanded bandwidth per
flow measured at the 300th second during the simulation
using the DRR schedulers. Fig. 3b shows the actual CPU and
bandwidth allocations per flow measured at the 300th sec
using the separate DRR schedulers. These results demon-
strate that maintaining fairness in one allocation of one
resource does not necessarily guarantee fairness in the
allocation of other resources. As shown in Fig. 2b, although
the CPU scheduler maintained perfect fairness in allocating
CPU, it served a fewer number of packets from flows 1 to 10,
which have high CPU requirements and more packets than

flows 11 to 30, which have lower CPU and higher bandwidth
requirements. As a result, the demanded bandwidth for
flows 11 to 30 were very high compared to that of flows 1 to 10,
as shown in Fig. 3b. Although the actual CPU utilization was
100 percent, the demanded bandwidth requirements for all
the flows combined was 245 percent. This high bandwidth
demand resulted in significant packet loss for flows 21 to 30 in
the bandwidth scheduler. The actual bandwidth utilization
was also 99.97 percent. As shown in Fig. 3b, since the
demanded bandwidth for flows 1 to 10 was less than their fair
share, the bandwidth scheduler equally distributed the
available bandwidth among flows 11 to 30.

4.4 Evaluation of Instantaneous Fairness Using the
Gini Index

All the fairness measures such as RFB and the worst-case
fair index [2] only measure the worst-case behavior of any
scheduler. They do not provide insights into the instanta-
neous fairness that could be achieved by a scheduler [24].
Consider a situation where two schedulers have the same
worst-case fairness bound, but one scheduler rarely
operates at the upper bound, whereas the other consistently
achieves the worst-case difference in the resource allocation.
The worst-case bound cannot help differentiate between the
two despite the fact that the latter scheduler is more fair.
Hence, there is a need for a metric that measures the fairness
achieved by a scheduler at any given instant of time. A
novel metric called the Gini Index, originally proposed in the
field of economics [25], was adopted in [24] to measure the
instantaneous fairness of scheduling algorithms. We present
a brief overview of this metric. Readers are referred to [24]
for a detailed description. The computation of the Gini
index is described formally as follows:

Definition 4. Let UðtÞ represent the set of the session utilities of
the flows at time instant t when served by a real scheduler and
let GðtÞ denote a similar set which is obtained when the flows
are served with the ideal GPS scheduler. Let uc1; uc2; . . . ; uck be
the elements of the set UðtÞ, such that uc1 � uc2 � . . . � uck.
The Lorenz Curve of the set of session utilities UðtÞ is the
function F ði; UðtÞÞ given by

F ði; UðtÞÞ ¼
Xi

j¼1

ucj; 0 � i � k:

The Gini Index over the k elements in UðtÞ is computed as

Xk

i¼1

jF ði;UðtÞÞ � F ði;GðtÞÞj: ð17Þ

From the definition of the virtual time function, we know
that the normalized service received by each flow at time t
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TABLE 3
Reduction in Packet Loss Using CBCS



in the GPS system is equal to the virtual time, V ðtÞ. Hence,

the Gini index can be computed as

Xk

i¼1

jF ði;UðtÞÞ � F ði;V ðtÞÞj: ð18Þ

Figs. 4 and 5 show the instantaneous fairness in the

allocation of CPU and bandwidth with CBCS and separate

DRR schedulers, respectively. Recall that, the lower the gini

index, the better are the fairness properties of the scheduler.

Notice that there are more spikes in the Gini index with

DRR implying that CBCS has better fairness characteristics.

5 IMPLEMENTATION AND PERFORMANCE

MEASUREMENTS OF CBCS ON A NETWORK

PROCESSOR

With the rapid increase in the capacity of transmission

links, the ease with which a scheduler can be implemented

in real hardware systems gains paramount importance. In

this section, we demonstrate how the CBCS scheduler can

be easily implemented on an off-the-shelf network proces-

sor such as the Intel IXP2400 network processor [1]. We also

evaluate the performance of our scheduler and compare it

with an implementation consisting of separate DRR

schedulers for the CPU and the link bandwidth.

5.1 Implementation Details

We have developed a data plane application for the IXP2400

and implemented both CBCS and also two sets of separate

CPU and bandwidth schedulers, based on DRR, on the fast

path processing, i.e., on the microengines. Our application

consists of modules for Packet Rx, Processing, Packet Tx,

Queue Manager, and the Scheduler. Also, the Ethernet

layer 2 encapsulation is included in the packet-processing

block. The implementation platform consists of a dual boot

workstation, an IXP2400 PCI card, and Intel IXA (Internet

Exchange Architecture) 3.1 SDK and framework. The

IXA 3.1 framework also includes a developer workbench

or Integrated Development Environment (IDE). The devel-

opment workstation is a Linux workstation configured to

allow the use of Windows 2000 hosted tools using VMware.

VMware allows running the IXA SDK developers work-

bench under Microsoft Windows 2000 while running

Linux 7.3 as the host operating system. The workstation

has a Pentium 4 1.5-GHZ CPU and 512 MB of RAM.
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Fig. 2. CPU allocation and corresponding demanded BW requirements per flow measured at the 300th sec using CBCS and DRR schedulers.

(a) CBCS scheduler. (b) DRR scheduler.

Fig. 3. Actual CPU and BW allocation at the 300th sec using CBCS and DRR schedulers. (a) CBCS scheduler. (b) DRR scheduler.



5.1.1 CBCS Implementation

We have implemented the CBCS scheduler on a single

microengine because it is not efficient to run the enqueue

and dequeue method of the same scheduler in different

microengines. The implementation architecture of the

schedulers is shown in Fig. 6a. The scheduler is implemen-

ted before the packet-processing block. The packet Rx

microengine receives the packets and sends an enqueue

message to the scheduler via scratchpad ring 1(SR-1). The

scheduler microengine continually reads the enqueue

request from SR-1, estimates the CPU requirements of the

packet using the SES estimations technique, and enqueues

the packet info in the SRAM queue. After dequeuing a

packet, the scheduler sends a message to the processor

microengines via a scratchpad ring (SR-2). Packet proces-

sing code runs on four microengines and all the micro-

engines read the processing requests from SR-2 and process
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Fig. 5. Comparison of Gini indices for bandwidth scheduling. (a) CBCS. (b) DRR.

Fig. 4. Comparison of Gini indices for CPU scheduling. (a) CBCS. (b) DRR.

Fig. 6. Scheduler implemntation architecture. (a) CBCS scheduler. (b) Separate CPU and bandwith scheduler.



the packets. After processing the packet, the packet-
processing microengines send a message specifying the
CPU consumed and the flow id to the scheduler via another
scratchpad ring (SR-3). After processing the packet, packet
processor microengines send a transmission message to the
transmitter microengine via a scratchpad ring (SR-4).

5.1.2 Separate CPU and Bandwidth Schedulers

Implementation

As mentioned earlier, we have also implemented a set of
separate DRR schedulers for scheduling CPU and band-
width separately on the IXP2400 processor in order to
evaluate its performance in comparison to that of the CBCS
scheduler. Fig. 6b shows the implementation architecture of
the separate schedulers. The messages that pass through the
SR-1, SR-2, and SR-3 are same as that of Fig. 6a. Here, after
processing the packet, the processor microengines send an
enqueue request to the bandwidth scheduler via SR-4. After
dequeuing a packet, the bandwidth scheduler sends a
transmission message to the Packet TX microengine via SR-5.

5.1.3 Data Structures and Intermicroengines Messages

For each packet received, packet data is kept in DRAM and
packet metadata (i.e., information about the packet) is kept
in SRAM. The packet metadata structure has eight long
word members. The IXP library provides macros and
functions called dispatch loop functions to read packet
metadata from SRAM and to write the metadata back into
SRAM. A dispatch loop combines microblocks on a
microengine and implements the data flow between them.
The dispatch loop also caches commonly used variables in
registers or local memory. These variables can be accessed
by microblocks using the dispatch loop macros and
functions. Dispatch loop functions were used to write some
data like the total resource requirement for a packet into a
member of the packet metadata in SRAM during a packet
enqueue operation and to retrieve the data back from
SRAM during a packet dequeue operation.

5.1.4 CBCS Implementation Details

We have used microengine local memory for keeping
CBCS scheduler variables such as Quantum, packet counts
for the flows or queues, credit counter per flow, estimated
CPU requirements (per packet per flow), etc. We used the
local memory as it is the fastest to access and it was
enough to accommodate our variables for our experiments,
which consisted of 16 flows. However, SRAM can be used
for allocating the variables when the number of flows is
extremely high.

The CBCS scheduler is implemented using four threads:
initialization thread, enqueue thread, dequeue thread, and
CPU prediction thread. After initialization is completed, the
initialization thread sends signals to the enqueue, dequeue,
and CPU prediction threads to begin their tasks as they wait
on the initialization thread’s completion signal.

Initialization Thread. The initialization thread sets the
SRAM channel CSR to indicate that packet-based enqueue
and dequeue would be done, i.e., each enqueue and
dequeue operation deals with a full packet. The thread also
initializes SRAM queue descriptors, queue arrays, and all
the scheduler variables including the quantum, credit
counter for the flows, estimated CPU requirements per

flow, etc. After initializing the scheduler variables, the
thread terminates itself so that the microengine thread
arbiter excludes this thread from its list.

Enqueue Thread. Fig. 7a shows a simplified flow diagram
of works performed within the CBCS enqueue thread. The
enqueue thread waits for the signal from the initialization
thread before starting its infinite loop. In each turn, the
thread calls an SRAM API (e.g., scratch_get_ring) to read an
enqueue message from SR-1 and specifies a signal number
as a parameter to the API call. The thread then swaps out to
allow other threads to run as the SRAM read operation
would take some time. After receiving the control back, the
thread checks the presence of the signal, i.e., it checks
whether the enqueue message read operation is completed
or not. Once the enqueue message is read, it checks the
validity of the enqueue message as there may not be any
message in the ring.

If the thread receives an invalid message, it does a
context swap and then goes for the next turn. The third LW
of packet metadata contains the packet size field. So, if the
enqueue message is a valid message, the thread reads the
third LW of the packet metadata from the SRAM using
another API (e.g., sram_read) and extracts the packet size
for calculating the total resource requirement (i.e., both the
CPU and bandwidth) for the packet. The CPU requirement
data is taken from the global variable (per flow), which is
constantly updated by the CPU prediction thread. The
calculated total resource requirement is used by the
dequeue thread for scheduling purposes and, therefore, it
needs to be stored. We decided to use the seventh LW of the
packet metadata to store this scheduler data.

The enqueue thread calls an SRAM API (e.g., sram_
write) to write back the resource requirement data to SRAM
and specifies a signal number. While the write operation is
in progress, the thread calls another API to enqueue the
packet info the SRAM queue corresponding to the flow-id.
The enqueuing is processed using the packetNext pointer.
The thread increments the packet count for the queue and
waits for the SRAM write operation to be completed. The
thread then does a context swap and goes for the next
round.

RR Calculations. We calculate the total resource require-

ment (RR) for the incoming packets in nano seconds (ns)

using the following equation:

RR ¼ CPU Cost of the packet ðnsÞ
þTransmission cost of the packet ðnsÞ

¼ CPU cost ðnsÞ per CPU Cycle�Estimated CPU Cycles

þTransmission cost per byte ðnsÞ�Packet size in Bytes:

Each microengine has a clock frequency of 600 MHZ, i.e.,

600 millions cycles per sec. Therefore, the CPU cost per

CPU Cycle ¼ 5
3ns. For a 100 Mbits network interface, the

transmission cost per byte would be 80 ns. Since the

microengines do not support the floating-point calculations,

the CPU cost calculation for a packet is approximated,

where the calculation error is less than or equal to 2
3 ns. This

calculation error or approximation is quite acceptable as it is

tiny compared to the value of RR and it happens for some

of the packets for all flows.
Dequeue Thread. Fig. 7b shows the simplified flow

diagram of the activities performed within the CBCS
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dequeue thread. As shown, the dequeue thread waits for a
signal from the initialization thread before starting its
infinite loop. In each CBCS round, the algorithm serves all
the active flows. For each flow i, the algorithm checks
whether the Queue Count, i.e., QC½i�, which is stored in
global variables, is positive. If QC½i� is positive, it adds the
quantum to the value of the Credit Counter of the flow i

(i.e., CC½i�); otherwise, it resets the CC½i� to 0 and tries to
serve the next active flow.

While serving flow i within each CBCS round, the
algorithm checks whether both the CC½i� and the QC½i� are
positive or not. If either of them is 0 or negative, the
algorithm does a context swap so that other threads get a
chance to run and then tries to serve the next active flow.
Otherwise, the algorithm calls an SRAM API (e.g., sram_
dequeue) to dequeue the packet info from the SRAM queue
corresponding to flow i and it waits for the dequeue
completion signal. After the dequeue, it decrements the
queue count for flow i and then it checks the validity of the
dequeued buffer handle (i.e., the packetNext ptr as
enqueued in the enqueue operation). If the buffer handle
is invalid, it does a context swap and then tries to serve the
next packet from the same flow i.

For a valid dequeue of a packet, the code calls another
SRAM API to read the resource requirement, RR, which is
the CPU requirement plus bandwidth requirement in
nano seconds and waits for the read operation to complete.
On completion of the SRAM read, the system signals the

thread and the code then decrements the CC½i� by the value

of RR. The thread then generates a scheduler-to-processor
message and enqueues the message to the scratchpad ring 2
(SR-2). However, before enqueuing, it checks the fullness of
the ring using IXP API and waits if the ring is full. After
sending the message to the processor, the thread swaps out
and tries to serve the next packet from the same flow i.

CPU Prediction Thread. This thread waits for the signal
from the initialization thread before it starts its infinite
loop. In each turn, the thread calls an SRAM API to read
the processor-to-scheduler message from scratchpad ring 3
(SR-3) and specifies a signal number to wait on and then
swaps out so that other threads can work while it is
waiting for the read to complete. Upon receiving a valid
message, it updates the estimated CPU requirement of the
specified flow using SES estimation as discussed in
Section 2. The estimated per packet CPU requirements
are kept in global variables.

5.2 Experiments and Results

The experiments were performed by running the code on

the IXA workbench’s cycle accurate transactor. We could

only evaluate the delay characteristics for the CBCS and

separate DRR schedulers because of the limitations of the

workbench simulator, which only provides the input and

output port logging options.
In our experiments, we used 16 flows with varying

packet sizes and different CPU requirements. Table 4 shows
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Fig. 7. Flow diagram of the CBCS enqueue and dequeue thread. (a) CBCS enqueue thread. (b) CBCS dequeue thread.



the CPU requirements and packet sizes for each individual
flow. We broadly classify the flows into five groups
depending on their CPU and bandwidth requirements.
We were unable to reproduce the same set of experiments
as in our simulation study discussed in Section 4 due to the
difficulty of porting our MPEG2 encoding and RC2
encryption and decryption code to the IXP processor.
Further, the inability of the IXP2400 to support floating
point calculations restricted our processing tasks to simple
examples such as IPv4 forwarding, which were provided
with the IXP SDK.

For system settings, the default settings of the workbench
simulator were used. Each microengine has a clock
frequency of 600 MHz. The SRAM clock frequency was
set to 200 MHz and the DRAM frequency was set to
150 MHz. The PLL output frequency used was 1,200 MHz.
The receive and transmission rates on the media interfaces
were set to 50 Mbps. We created the 16 data stream files
containing Ethernet frames and used the workbench
simulator’s network traffic assignment functionality to
inject the data frames. The SES coefficient � was set to 0.4.

The packet logs obtained from the IXP processor were
analyzed to determine the packet delays. Figs. 8 and 9 show
the delays measured for one particular flow from the two
groups (flow with high CPU and high BW requirement and
low CPU and high BW requirement) for the CBCS and
separate DRR schedulers. We have observed that the results
for the other flows within the same group and also for other
groups are quite similar to the representative flows used in
the comparisons. Due to space limitation, we could not

show all the delay graphs. The maximum and average
delays and the standard deviation for these flows are shown
in Table 5. Delay results show that CBCS achieved superior
delay guarantees compared to DRR (when used individu-
ally for CPU and bandwidth scheduling) for all the flows.

It should be noted that the performance improvement
achieved by CBCS in our IXP experiments is slightly lower
than that observed in the simulations discussed in Section 4.
However, direct comparisons between these two sets of
results is not possible due to the vastly different nature of the
underlying simulation platforms: The ns-2 simulator is a
single-threaded event-driven system, whereas the IXP work-
bench transactor is a cycle accurate simulator and the code
compiled for the transactor can be run on the IXP board itself.
Further, the IXP processor is unable to execute floating point
operations, thus limiting the processing operations that can
be requested by the flows. This also necessitates using
different parameters in these two experiments, notably, the
flow characteristics. However, the IXP experiments do
indicate that CBCS does demonstrate noticeable performance
improvements over separate DRR schedulers.

6 CONCLUSION

In this paper, we have presented the design, implementation,
and evaluation of a novel composite scheduler called
Composite Bandwidth and CPU Scheduler (CBCS) for dynamical
scheduling of multiple resources. Analytical evaluations of
the work complexity and fairness bounds for the CBCS
scheduler were presented. We have compared our scheduler
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Experimental Setup

Fig. 8. Delay for flows with high CPU and high BW requirements. (a) CBCS. (b) DRR.



with a system consisting of separate schedulers for allocating

the link and processor resource, which is typical of most

routers today. Our analytical results show that CBCS is a low

complexity scheduler ðOð1ÞÞ which has better fairness and

performance characteristics as compared to an implementa-

tion consisting of separate schedulers of similar complexity.

In addition, we have also presented simulation results which

corroborate the conclusions of our analysis. The performance

results strongly support the benefits of our composite

scheduler to better support computing along the forwarding

path without sacrificing efficiency.
With the rapid growth in link bandwidth, the duration of

time that is available to a router for making a scheduling
decision is diminishing rapidly. Hence, it is imperative that

a scheduling algorithm can be easily implementable in real

hardware systems. In this paper, we developed a real-world

implementation of the CBCS scheduler using an off-the-

shelf network processor such as the Intel IXP 2400. We also
presented empirical evaluations to highlight the improved

delay characteristics of CBCS in comparison with an

implementation consisting of two separate DRR schedulers.
Even though we have focused on the joint allocation of

the processing and bandwidth resources, our algorithm can

be readily adapted for the joint allocation of a combination
of different heterogeneous resources such as bandwidth

and battery power in mobile ad hoc networks, memory, and

processor cycles in routers.
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